45 research outputs found

    Stability of the Magnetic Monopole Condensate in three- and four-colour QCD

    Get PDF
    It is argued that the ground state of three- and four-colour QCD contains a monopole condensate, necessary for the dual Meissner effect to be the mechanism of confinement, and support its stability on the grounds that it gives the off-diagonal gluons an effective mass sufficient to remove the unstable ground state mode.Comment: jhep.cls, typos corrected, references added, some content delete

    Entropy Crisis, Ideal Glass Transition and Polymer Melting: Exact Solution on a Husimi Cactus

    Full text link
    We introduce an extension of the lattice model of melting of semiflexible polymers originally proposed by Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we introduce an interaction energy that corresponds to the presence of a pair of parallel bonds and a second interaction energy associated with the presence of a hairpin turn. Both these new terms represent four-site interactions. The model is solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a first-order melting transition between a liquid and a crystalline phase. The continuation of the liquid phase below this temperature gives rise to a supercooled liquid, which turns continuously into a new low-temperature phase, called metastable liquid. This liquid-liquid transition seems to have some features that are characteristic of the critical transition predicted by the mode-coupling theory.Comment: To be published in Physical Review E, 68 (2) (2003

    (Anti-)self-dual homogeneous vacuum gluon field as an origin of confinement and SUL(NF)×SUR(NF)SU_L(N_F)\times SU_R(N_F) symmetry breaking in QCD

    Full text link
    It is shown that an (anti-)self-dual homogeneous vacuum gluon field appears in a natural way within the problem of calculation of the QCD partition function in the form of Euclidean functional integral with periodic boundary conditions. There is no violation of cluster property within this formulation, nor are parity, color and rotational symmetries broken explicitly. The massless limit of the product of the quark masses and condensates, mfψˉfψfm_f \langle \bar\psi_f \psi_f \rangle, is calculated to all loop orders. This quantity does not vanish and is proportional to the gluon condensate appearing due to the nonzero strength of the vacuum gluon field. We conclude that the gluon condensate can be considered as an order parameter both for confinement and chiral symmetry breaking.Comment: 16 pages, LaTe

    Monopole Condensation and Dimensional Transmutation in SU(2) QCD

    Full text link
    We resolve the controversy on the stability of the monopole condensation in the one-loop effective action of SU(2) QCD by calculating the imaginary part of the effective action with two different methods at one-loop order. Our result confirms that the effective action for the magnetic background has no imaginary part but the one for the electric background has a negative imaginary part. This assures that the monopole condensation is indeed stable, but the electric background becomes unstable due to the pair-annihilation of gluons.Comment: 13 pages, 2 figure

    On twisted Fourier analysis and convergence of Fourier series on discrete groups

    Full text link
    We study norm convergence and summability of Fourier series in the setting of reduced twisted group CC^*-algebras of discrete groups. For amenable groups, F{\o}lner nets give the key to Fej\'er summation. We show that Abel-Poisson summation holds for a large class of groups, including e.g. all Coxeter groups and all Gromov hyperbolic groups. As a tool in our presentation, we introduce notions of polynomial and subexponential H-growth for countable groups w.r.t. proper scale functions, usually chosen as length functions. These coincide with the classical notions of growth in the case of amenable groups.Comment: 35 pages; abridged, revised and update

    Meson masses within the model of induced nonlocal quark currents

    Full text link
    The model of induced quark currents formulated in our recent paper (Phys. Rev. D51, 176) is developed. The model being a kind of nonlocal extension of the bosonization procedure is based on the hypothesis that the QCD vacuum is realized by the (anti-)self-dual homogeneous gluon field. This vacuum field provides the analytical quark confinement. It is shown that a particular form of nonlocality of the quark and gluon propagators determined by the vacuum field, an interaction of quark spin with the vacuum gluon field and a localization of meson field at the center of masses of two quarks can explain the distinctive features of meson spectrum: Regge trajectories of radial and orbital excitations, mass splitting between pseudoscalar and vector mesons, the asymptotic mass formulas in the heavy quark limit: MQQˉ2mQM_{Q\bar Q}\to 2m_Q for quarkonia and MQqˉmQM_{Q\bar q}\to m_Q for heavy-light mesons. With a minimal set of parameters (quark masses, vacuum field strength and the quark-gluon coupling constant) the model describes to within ten percent inaccuracy the masses and weak decay constants of mesons from all qualitatively different regions of the spectrum.Comment: 31 pages, LaTe

    Hydrogels: Cross-Linked Polyvinyl Alcohol

    No full text
    corecore