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ABSTRACT 

Due to the kinematic and dynamic simplifications possible 

because of the large mass of heavy quark bound states, certain 

properties of these systems can be quantitatively analyzed 

within the framework of Quantum Chromodynamics. It is clear 

that dimensionally the size of the bound state is proportional 

to the inverse quark mass, and for very heavy quarkonia the 

radius of the system should become smaller than that of normal 

hadrons. When this small system interacts with external long 

wavelength field quanta, the natural expansion that results 

is of a multipole type, analogous to the familiar multipole 

expansion in electrodynamicps This multipole expansion 

has better convergence properties than the standard 

perturbative treatment in certain kinematic regimes, which 

opens up a new area for strong interaction physics calculations . 

More specifically, it is ideally suited to investigate soft 

non-perturbative effects in QCD which appear to be ss crucial 

to present day phenomenology and the conjectured confinement 

mechanism. 

This work will utilize the heavy quarkonium multipole 

expansion to analyze several interesting processes. Chapter I 

is concerned with the production of heavy quarkonia from the 
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decay of even heavier quarkotiia specifically the production 

of charmonium bound states from the decay of the 7(9A). 

Chapter II contains a calculation of F meson production in 

e e annihilation. Chapter III and IV are both concerned with 

the inclusion of non-perturbative effects in the heavy quark 

potential using multipole techniques. The long wavelength 

non-perturbative vacuum gluon condensate of Shifman, Vainshtein, 

and Zakharov is used to first determine when the perturbative 

1/R. potential for ultra-heavy quarkonia breaks down, and then 

to actually calculate the complete heavy quark potential out 

to a distance of roughly a fermi. This generates a potential 

which goes like 1/R at short distances, and becomes linear 

in R at large distances with a calculable coefficient which is 

in spectacular agreement with phenomenologically conjectured 

potentials. 
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Introduct ion 

The discovery of the y in the f a l l of 1974 [1] marked the 

beginning of a new way to study the strong i n t e r a c t i o n s . The ¥ i s 

in te rpre ted t o be the bound s t a t e of a heavy quark and I t s ant iquark , 

with the new quark f l avor , ca l led charm [ 2 ] , adding a new quantum 

number to the "old" hadron spectroscopy. The addi t ion of another 

quantum number, or degree of freedom, t o hadronic s t a t e s was in I t s e l f 

not' so exc i t i ng . The excitement was generated by the fact t ha t the 

mass of t h i s new quark i s roughly 1.5 GeV, which i s l a rge when com

pared to t yp i ca l masses of the strong i n t e r a c t i o n s . While the old 

mesons suffered from the fac t t ha t the bound s t a t e quarks are 

extremely r e l a t i v i s t i c ( i . e . mass dif ferences on the order of the 

masses themselves) , i t was conjectured t h a t these heavy objec ts 

within the bound s t a t e might be moving slowly, and the powerful 

methods for studying n o n - r e l a t i v i s t i c systems might be r e l evan t . 

The fac t t ha t the low-lying charm-anticharm quark bound s t a t e has 

a mass of roughly 3.1 GeV, and the threshold for producing a charm-

anticharm pa i r tha t separates and fuses with l i g h t quarks i s only 

about .6 GeV higher ind ica tes t ha t the cc pa i r i s indeed "loosely 

held" In the bound s t a t e and perhaps n o n - r e l a t i v i s t i c . Subsequent 

ca lcu la t ions of the charmonium spectrum using n o n - r e l a t i v i s t i c 

p o t e n t i a l models have had remarkable success , and the physical 

p i c tu re of loosely bound, slowly moving heavy quarks i s believed to 

be accura te . Further v e r i f i c a t i o n of t h i s i n t e rp r e t a t i on was 

obtained with the discovery of a s t i l l heavier quark bound s t a t e , 

ca l led bottomonium, in the spring of 1977 [ 3 ] . This bottom-

antibottom quark bound s t a t e i s believed t o be even more non-
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relativistic than chanaonium, and an even better laboratory for these 

techniques. 

Besides the kinematic simplification that occurs due to the 

heavy quarks being non-relatlvistic, there is also a dynamic simplifi

cation that the large quark mass induces. This dynamic simplification 

is dependent upon a property of the currently conjectured theory of 

quark dynamics (i.e. strong interactions) called Quantum Chromodynamics 

(QCD) [4]. QCD is a nonabelian gauge field theory of the interactions 

of "colored" quarks and eight self-interacting (color charged) mass-

leas vector gauge bosons, the gluons. An interesting property of this 

theory is asymptotic freedom [5], which very simply and qualitatively 

stated is that the effective coupling constant of the theory becomes 

smaller as the invariant mass of the fundamental particles involved 

in the interaction process becomes larger. The hope then becomes 

that these heavy quarkonia states will lend themselves to sensible 

perturbative expansions since the coupling constant of QCD, a , is 

a reasonably small expansion parameter for sufficiently heavy states. 

While the conjecture that the heavy quarkonia are non-relativistic 

bound states has been verified and exploited, the hope of doing 

simple computations as a perturbative expansion in a has met with 

serious problems. Most notably, the calculation of the first non-

leading contribution in a for the strong decay of pseudoscalar 

quarkonium exhibits a breakdown in the perturbative approach [6]. 

The problem is that even for the heaviest quarkonium states presently 

accessible, the T family, the first order radiative corrections 

appear to be at least 50% of the lowest order annihilation term. 

This is a subtraction scheme dependent result but appears to remain 
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a problem in any scheme. It appears that a is not yet small enough 

at these mass scales to counterbalance the large coefficients in the 

perturbative expansion. Thus, it appears that asymptotic freedom 

cannot be exploited for these heavy systems, and our "perturbative 

hands are tied." 

The lack of a naive perturbative expansion for coupling external 

gluons to a quarkonium bound state is not an insurmountable problem. 

Another property of the large quark mass can be used to advantage. 

It is clear that dimensionally the size of the bound state is pro

portional to the inverse of the quark mass (the constant of pro

portionality includes powers of the coupling constant). For heavy 

mass quarkonia, the radius of the system should become smaller than 

that of normal hadrons. If this small system interacts with long 

wavelength probes, the natural expansion that results is of a multipole 

type. Intuitively, there is a qualitative analogue in the coupling of 

neutral atoms to long wavelength external photons in QED» The 

expansion parameter for that process changes from the naively 
2 expected o to a™(fe " & * where |e is the 3-momentum of the 

external photon and r is the separation vector of the atomic 

constituents. Fcr soft photons (A ^> r ) , the expansion parameter 

ci „(k * r) ^ a , and the-expansion is much better than naively lira * - ha 
2 expected. The origin of the additional suppression factor of (k • r) 

is that the long wavelength probe (photon) sees a very close pair of 

opposite charges» both of which it couples to. A partial cancellation 

occurs when both couplings are summed, and the remaining contribution 

is due to the photon field not being homogeneous over the size of 

the atom, i.e. the neutral atom only couples to gradients of the 
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external photon field, which are proportional to powers of the 

3-momentum for free fields. For QCD Wfc can investigate a similar 

kinematic regime where long wavelength gluons are coupled to small 

color singlet quarkonia, and naively hope to Improve our expansion 
2 parameter from a to a (k • r) via the same type of physical 

mechanism as above, and thus have a reliable methodology for a 

class of strong interaction calculations. 

There are differences between QCD and QED which make this 

program somewhat difficult to Implement. The complications stem 

from the fact that QCD is a non-abelian gauge theory, which means 

that the gauge fields are themselves charged and thus couple to one 

another. This complicates the problem of finding the gauge invariant 

effective multipole interaction for the following reason. All 

diagrams must be summed to each order in perturbation theory to have 

a gauge invariant set. For QED, the complete set of diagrams for 

coupling a photon to an atomic system bound by the one photon 

exchange potential is given by Fig. 1. For QCD however, the complete 

set of diagrams for coupling a gluon to a quarkonium system bound by 

the one gluon exchange potential is given by Fig. 2. It is fig. 2C 

that causes complications and is a manifestation of the non-abelian 

nature of QCD. We can see that the derivation of the QCD multipole 

expansion appears to depend critically upon the form of the binding 

potential of the quarkonium system, since the external field actually 

couples to the bound state exchange quanta. 

Another complication that arises in the non-abelian case is due 

to the fact that coupling of the color singlet quarkonium to an 

external gluon field changes the bound state color charge — it changes 
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from a color singlet to a color octet. The QQ state in a color octet 

is radically different from the color singlet state. For the cal

culable one gluon exch&iige potential, the color singlet is in an 

attractive channel and the color octeC is repulsive , 'Furthermore, 

it has been conjectured that only color singlet Lidronlc states 

even exist asymptotically. Thus, a color singlet QQ state that 

couples to an external gluon as in Fig. 1 becomes a highly virtual 

color charged oct*t state anc* must couple again to an external gluon 

field to color neutralize. This is illustrated in Fig. 3. Thus, the 

QCD multipole expansion would appear to be quite different from that 

of QED, i.e. the color : inglet bound state must couple to more than 

one external gluon field to return to an asymptotic colc-r singlet 

state, and these gluon-quarkonium couplings ara tightly localized 

about the color octet intermediate states due to the octet states1 

high virtuality [7]. 

Even with these complications as mentioned above, a multipole 

expansion for the soft gluon-heavy quarkonium coupling can be 

derived [7], [8]. The expansion has the basic properties that were 

physically motivated previously using the QED analogue, i.e. the 
2 expansion parameter has very roughly been improved from a. to a ( k * t ) . 

This opens up a new region for reliable strong interaction calculations 

which have a well behaved series expansion. Not only does it make 

possible certain straight perturbative style calculations, but it also 

allows one to get a handle on the soft non-perturbative effects in 

QCD which appear to be so crucial to present day phenomenology and 

the conjectured confinement mechanism. 
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The ef fect ive interaction Lagrangian for the QCD nult ipole 

expansion which w i l l be exploited throughout this work has the form 

XT " I I" Q ^ O . t ) + * • E ( 0 , t ) + » . B ( 0 , t ) + . . . ] 

where 

Q a - g J d 3 r n o T a ¥ 

d a - g / d 3 r r ? Y 0 V 

i° a " 8 / d r j ( r « i;yT *> 

with y the QQ wavefunction, r the QQ separation, and T the generators 

of SU (3). The explicit form of the dlpole couplings will be derived 

in Chapter I, and then used in later chapters. When higher order 

multipoles are necessary to estimate neglected terms, we will directly 

use the results of Ref. 8. 

In this thesis, several topics which have the unifying thread 

of utilizing the soft gluon-heavy quarkonium coupling will be investi

gated. Chapter I [9] is concerned with tihe production of heavy quark-

onia from the decay of even heavier quarkonia— more specifically the 

production of charmonium bound states from the decay of the T(9.4). The 

soft gluon-heavy quarkonium coupling is needed due to the fact that for 

this process, the charmonium final state is produced from a single 

(color octet) gluon and must radiate another (soft) gluon to color neu

tralize. This final state color rearrangement is shown to greatly sup

press the branching ratio to charmonium. Chapter II contains a calculation 

of F meson production (states of net charm and strangeness) in e e~ 
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annihilation at the energy of the ¥(4414) [10] . As t h i s energy Is 

just above FF threshold, the soft gluon techniques are once again 

useful . We find that our production mechanism can account for at 

l eas t a large fraction of the observed rate . 

Chapters 111 and IV are both concerned with the inclusion of 

non-perturbative e f f ec t s in the heavy quark potent ia l . The general 

procedure i s to accept the hypothesis of Shlfman, Valnshteia, and 

Zakharov that the long wavelength non-perturbative structure of QCD 

can be parameterized by non-zero vacuum expectation values (VEV) of 

certain gauge invariant f i e ld operators [11]. The VEV's are determined 

from experiment, and then can be used to calculate non-perturbative 

e f fects in other processes. We use the soft gluon-heavy quarkonium 

coupling to incorporate the ef fects of these long wavelength VEV's on 

the heavy QQ s ta te . Chapter 111 determines when the 1/R potential , 

which i s dominant for ultra-heavy quarkonia, breaks down due to 

non-perturbative e f fec t s [12] , Chapter IV i s a more sophisticated 

calculation that actual ly determines the heavy quark potential out 

to a distance of roughly a fermi by incorporating the perturbative 

one gluon exchange potential and the relevant non-perturbative e f f ec t s 

within the framework of Shifman et a l . ' s VEV's. The derived potential 

i s in spectacular agreement with proviously conjectured phenomenolog-

ica l potentials f i t to the data, and has a l inearly ris ing confining 

potential with precisely the correct coeff ic ient to reproduce the 

Regge slope [13] . 

Finally, we c lose Kith a short summary and mention possible 

extensions of th i s work. 
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Figure Captions 

Fig. 1. Photon coupling to system bound by one photon exchange 
potential. 

Fig. 2. Gluon coupling to quarkonium system bound by one gluon 
exchange potential. 

Fig. 3. Quarkonium color singlet to color singlet transition via 

lowest order gluon emission. 
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FIG. 3 
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CHAPTER I 

Quarkonium Production Via The One Gluon Mechanism 

Abstract 

Using multipole techniques within the framework of 

Quantum Chromodynamics, it is determined that quarkonium 

production from a single virtual gluon is suppressed due 

to the lack of colored resonances. The branching ratio to 
_2 charmonium in T(9.A) decay is estimated to be between 10 

_3 
and 10 times smaller than previous estimates. 
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I. Introduction and review of previous calculations 
As previously discussed, there are several powerful techniques 

available for dealing with heavy quark states — most notably the non-
relatlvlstic approximation and the multipole expansion. A candidate 
process which deals with only heavy quarks is the production of heav;, 
quarkonia in the decay of still heavier QQ states. Within the frame
work of QCD, it is supposed that a heavy quarkonium state ( j p c - 1 ~ ) 

decays into three gluons which materialize by fragmenting into hadrons. 
We expect heavy flavors to be produced in this process only through a 
virtual timelike gluon of large invariant mass. The process is 
illustrated by Fig. 1. 

The total rate for producing heavy flavors in the final state 
for this process has been estimated [1]. The estimate is based upon 
an analogue to electromagnetic heavy flavor production in e e 
annihilation. It is well known that in e e~ annihilation the cross 
section for producing a specific flavor is roughly equal to the cross 
section for producing a free pair of quarks, if one averages over 
resonance bumps [2]. This same idea of duality was applied to heavy 
flavor production in quarkonium decay by calculating the rate for 
production of a pair of free heavy quarks, as in F£g. 1. The authors 
of Ref. 1 thus determine the branching ratio of the T(9.4) to charm + 
anticharm (cc) + two gluons. The branching ratio is given as a 

function of Che dimensionless parameter £, which is defined as 
2 2 2 Q /m , where Q is the invariant mass squared of the produced charm-

anticharm pair. Their results are summarized in Fig. 2. The total 
branching ratio to charmed particles is obtained by integrating the 

differential branching ratio, p(£)» over the entire kinematic range 
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of £. To obtain partial branching ratios* one can integrate p(g) just 

over the energy range which contains the desired final charm state. 

The charmonium spectrum consists of the cc bound states 
1 3 3 n ( S ) , ib( S-/, and v( F T) which exist below the threshold for c o T x n J 

producing states which contain a particle with charm -f-1 and a particle 

with charm -1. These "net charm" particles consist of a charmed quark 

combined with a light flavor antiquark, and are called D arsons. It 

is assumed that when the above differential branching ratio is 
2 2 

integrated from the minimum Q up to (2m_) , we obtain the branching 

ratio to find the final state charm manifesting itself as the char

monium cc bound states (n , IJJ,X)> Furthermore, Integrating p(£) from 
2 2 -

(2iO up to the maximum Q gives the branching ratio to DD final 

states. The authors of Ref. 1 find branching ratios of 2.7% to DD, 

and 1.1% to charraonium in the decay of the T. 

II. Necessary modification of the previous result 

Essential to the referenced authors' determination of the branching 

ratio to charmonium bound states is the assumption of duality. 

However, this does not seem a reasonable assumption since the produced 

cc pairs are not produced in a color singlet state. Since colored 

resonances have not been observed, one should not. expect dynamical 

enhancement of cc production through the one gluon mechanism at 

discrete (bound state) energies, and thus not have an operative 

version of duality working. Instead, one must calculate the rate 

for the specific color singlet final state desired. This means that 

the process "g" -*• (cc) + g must be calculated, and then used to 

replace the sufaprocess "g" -*• cc that appears in the work of Ref. 1. 

The modification that our work [3] incorporates is symbolically given 



IS 

by Fig. 3. 

The lowest order diagrams that must be calculated to obtain a 

gauge Invariant result are those of Fig. 4. In words, they correspond 

to heavy quark-antiquark production via a virtual gluon, followed by 

propagation of the system in a color octet state, with the subsequent 

emis^.on of an on-shell gluon which is coupled either directly to a 

quark (Fig. 4a, b) or to a virtual gluon exchanged between the quark 

lines (Fig. 4c). It is expected that the emitted gluon can be treated 

as free, since how It eventually combines with the other color octet 

fragments into a color singlet hadronic state should be explained by 

duality, i.e. it hadronizes with unit probability. The remaining quark 

system is then projected onto the desired color singlet state. The 

justification for doing a perturbative treatment of soft gluon 

emission is based upon our previous multipole arguments. This is _: 

"quasi-dipole" type coupling of a long wavelength probe (gluon) to a 

small source (quarkonium), which conspires with limited phase space 

to give a small effective expansion parameter suppressing higher order 

soft gluon emission. For this same reason, we must restrict ourselves 

to final state charmonium and not (cq)(cq) final states (where q denotes 

a 1 ight quark) . 

In order to illustrate the mechanics of heavy quarkonia production 

and to specifically estimate the branching ratio of T to charmonium, 

we will assume the charm-anticharm potential is reasonably approxi

mated by the lowest order perturbative one gluon exchange potential. 

This approximation should yield an order of magnitude estimate for 

charmonium, and will become increasingly more accurate as one deals 
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with heavier quark systems. In the following we will refer to the 

cc pair as a QQ pair to emphasize the generality of the derived 

expressions. 

The calculation of the relevant S-matrix element begins by 

adopting a modified interaction picture where the Hamiltonian is 

divided into an external perturbative part (H ) which describes the 

coupling of the QQ system to external gluons, and a part treated "non-

perturbatively" which describes the internal interactions of the QQ 

system. The internal Hamiltonian for the QQ system in the attractive 

(repulsive) color singlet (octet) state is ̂ .(Ho). The lowest order 

S-matrix element for the process "g" •* $ + g, where $ generically re

fers to a QQ color singlet bound state, is 

S = - 2,r6<Ef - E i ) < * g|/" dt H E(t) exp[- i(H g + E^tlH^CDl-g" > 

(1.1) 

with e, the binding energy of the state ». Inserting a complete set 

of intermediate color octet s tates and rotating to Euclidean space 

y ie lds 

S - 2TriS(E£ - E £) < g *|£°dt H E(t) exp[-(H 8 + e ^ t ] |QQ> 8 

V d 3 p V d 3p„ 
J 2 f 8<QQ|HE(0)|"g" > . (1.2) 

"in) (2n) 

Note that here we Bee where the damping due to the octet v i r tua l i ty 

comes in . The f i r s t matrix element in Eq. 1.2 i s A.-: d i f f i cu l t part 
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of the ca l cu l a t i on . I t contains the soft gluon-heavy quark s t a t e 

coupling in the form (QQ)o -*• *g» I t ' s evaluat ion w i l l be the topic 

of the next sec t ion , and ve w i l l find the beginning of the awaited 

mult ipole expansion. 

I l l , Form of the soft gluon-heavy quarkonium coupling 

To evaluate the (QQ)o •+ 4g matrix element we c lose ly follow the 

techniques developed by Peskin [4] in der iv ing h i s operator product 

expansion for heavy quark systems. Due to the spec i f ic matrix element 

we a re ca l cu l a t i ng , we sha l l see tha t the only diagrams we must 

ca l cu l a t e a re those of Fig. 5 . I t remains to show tha t t h i s i s a 

gauge invar iant set of diagrams and that a l l the diagrams a re the 

same ef fec t ive order in the coupling cons tan t . Using the non-

r e l a t i v i s t i c Feynman ru l e s given in Appendix A, and r e s t r i c t i n g the 

emitted gluon t o t imel ike po l a r i za t i on , F i g . 5a + 5b can be reduced t o 

i(2ir) V ( P f - P.) (IgT.) -
(5a + 5b, t imelike) =7^ : , _ S-St£ 6 , 6 , 

V 3 / 2 ( 2 k ) 1 / 2 A S l S i S 2 S 2 
o 

x <* | [A^(x ,R + | r ) - AJJfr.R - ^ r ) ] exp[-(H g + E ^ T ] d T | Q Q ^ 

(1.3) 

where R is the center of mass coordinates of the t, r is the 

relative quark spacing, and the A field has been made dimensionless. 

Furthermore, the approximation can be made that 

[A£(T. R + | T ) - A*( T, R - |r)J - r • S A£(T, M + 0(rk Q) 3 

-J-?AnV""^^.»U 
(1.4) 
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which neglects terns of order <jkjr) and keeps all powers of 
(k /e.). Doing the now trivial T integration yields 

i(2*)363(P - P ) (igT.) 
(5a + 5b, tinelike) = - -375 h ^ r- S 6

a s- Ss s' 
r u C2k ) 1 / Z /I sl sl S 2 S 2 

n«0 (Hg + Ej) 
(1.5) 

Note that this looks like the beginning of an electric dipole 

transition, i.e. the (QQ) 0 state propagates via the -77:—-—r- energy o ^M_ + z) 
denominator, then couples to r • VA , with an outgoing gluon and 

gauge invariant field strength tensor. Next, evaluating Fig. 5a + 5b 
using the rules of Appendix A, and restricting the emitted gluon 
to be of spacelike polarization yields two terms of different spin 
structure. The spin singlet term corresponds to the spacelike 
gluon coupling to the quark color convection current, and yields 
after manipulations similar to those used deriving Eq. 1.5 

(2w) 36 3(P f - P A) (igT b) o e 

(5a + 5b, spacelike) J75 775 0 , & , 
V 3' 2 (2k ) 1 / 2 ^3 sl sl S2 S2 o 

o X 
(1.6) 

Note that the sun of Eq. 1.5 and Eq. 1.6 does not give a gauge 
invariant result. The spin flip term corresponds to the spacelike 
gluon coupling to the quark spin current, and yields the independently 
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gauge invariant expression 

(5a + 5b, spaceliko) = 
i(2tf)V(P{ - P ±) (igT b) a g 

V3''2 (2k ) 1 / 2 /3 

- * b A « . . . . < « i — 1 - ^ T l « W n % ^ n-ol - 1 ^ 1 -2»i ,ce B + « 1 ) » * 1 , w 8 ° 2 n 

b 1 

(1.7) 

where x * s t n e non-relativistic quark two-oomponent spinor. In order 
to evaluate Fig. 5c, we first isolate the effective interaction 
induced by the three-gluon-vertex. This is done by calculating Fig. 6 
in the limit of (x - y) -*• 0. Also*note that the legs which ultimately 
connect to quark lines have timelike polarization to lowest order in 
p/m_. Therefore, in Feynman gauge, with A = j = spacelike 

(Fig. 6) - 8t b a c AJ( x)JA( 3J - Sj) - T - i -
' ' 4TT (X - w. 

(Fig. 6) = ^ 5 J- . (1.8) 

2 2 "> 

which reduces to 
g t b 3 e 4 ( x ) ( y ' x ).i 
4ir (y - x) 

We can now make the insertion of Fig. 6 onto the quark lines vhich 

yields Fig. 5c. After manipulations similar to those used deriving 

Eq. 1.5, we find 

i(2ir)363(P - P ) 2 (igTj) . 
(Fig- 5c) = —j-„ £ _ i - |8 b_aB 6 { 

v3/2 ( 2 k ^ l / 2 8* ^ s l S l s 2s' 

» 2 < *l ? —J-T5T I « >8 ( V X • <*-9> 
n=0 (H0 + E.) 
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However, thle term can be written in a way which makes manifest the 
2 fact that it is effectively the same order in g as the term from 

Figs. 5a and 5b. Ihia i« done by using the relation 

Hg - Hj - 3gZ/8nr which is derived in Appendix B and valid for QCD 

in Coulomb approximation, and the coanutation relation 
[H-.r,] - - 2ip./m , which yields 

i (2 i t ) 3 6 3 (P - P ) UgT h ) 8 

<Fig. 5c) = — - m — 4 ? 3 i -±-s£ t , « , 
\ i l 2 (2k. ) 1 U fi V l S2 82 

n-0 
< *|r i |QQ >.(»„>" A* (1.10) 

1 (H8 + e i ) n 8 ° ^ 

Note that the first n * 0 term in Eq. 1.10, which is a potentially 
gauge non-invariant contribution, is zero because of the specific 
process computed, i.e. 
< *|r-Ab|QQ > 3 d 3p Qd 3p^ * 3 < P Q + P Q > - |d3r*(r)r.Ab53(r) ~ 0 

since *(r) is finite as r -*• 0. Now adding together Eq. 1.5, 1.6, 
and 1.10 yields for the non-spin-flip part of the sum of diagrams 
5a, 5b, and 5c, the gauge invariant expression (to lowest order) 

,„ « - ± ( 2 " ) 3 i 3 ( P f - V ( l g Tb )
0B , , (Fig. 5) Tin 1/2 r S

B B' SB S' 
V3'2 (2k ) " * fi S 1 S 1 S 2 S 2 

(1.11) 

n"0 (Hg + Eĵ ) 

while Eq. 1.7 is the gauge invariant expression for the spin flip 
part. Now that we have the gauge invariant expressions for the 
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(QQ)r •* • + g matrix eleaents. we can go back and evaluate the 

S-matrix eleaents of Eq. 1.3 for apecific final atate •'«. Mote that 

Eq. 1.7 correaponds to a color magnetic dlpole transition, and 

Eq. 1.11 correspond* to a color electric dlpole transition. 

In retrospect, It should be no surprise that the diagrams of 

Fig. 4 are the conplete gauge invariant set. The reason is that we are 

coupling an external gluon to a bound state, as given by Fig. 7 for the 

one gluon exchange potential. If we connect the external gluon in 

all possible ways to the bound state, to loweBt order ve generate 

just the set of diagrams given by Fig. 4. 

IV. Results for chanaonlum production 

Using Eq. 1.7 and 1.11 we can now evaluate the S-matrix 

elements of Eq. 1.3. The possible quarkonia final states are the 
1 3 n( S ) and the x( **-,)• The ¥ state is not allowed due to charge o J 

conjugation invariance. For n( S ) production only the color 

magnetic dlpole transition operator of Eq. 1.7 is of relevance 

due to the spin structure, I.e. V ^ S ^ - QQ^Sj) + QQ( 1S o) + g( 3S 1>. 

Doing the spin » 0 projection, the sum over all n, and substituting 
2 

P 0/nu + e 8 for H f l, the amplitude for "g" •*• n + g becomes 

s K s o>j - l ( 2 i r ) V « j - P - k ) g 2 e a . ( k * E b ) d 3 p Q 

( 2 Q ) 1 / 2 (2k ) 1 / 2 V J* ( 2 * ) 3 

* <\\ l , I QQ>8 U.12) 
» ( c T - k 0 ) + p 2 - I t 

where e and g are the polarization vectors of the incident and 

final state gluons, and e r * Ei + E 8 " N o t e C n a c t h e a m P l i t u d e 
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has the expected physical behavior of developing a finite absorptive 
part when k Q > E_, I.e. when Q > 2tiQ + c., which is the threshold 
for "physical" intermediate colored states. Using the couloablc 
IS bound state wavefunction for the Matrix element, squaring the 
amplitude and sunning over final states, yields for the rate 

g*(Q - m n ) 3 

R("g" * n + g) = 2 3 , 1 " TTl ( 1 ' 1 3 > 
36* Qa J | [± + /m(E + m - Q)] z | i 

demands that only the color electric dipole transition operator of 
3 — 3 Eq. 1.11 contributes to the amplitude, i.e. "g"( S,) -• QQ( S.) •» 

QQ(3Pj) + g( 3S 1). We find the 3Pj states produced with their 
statistical weight R :R :R " equal to 1:3:5 and 

3 •) _ g*(Q - m )V(2J + 1) 
R "g" - X< P,) + g = , , * 
I J > 432lTO r/^fT 

1 ,2 ,4 5 432^Q J [/ aCeJ + m^ - Q) + f$e \" a 3 

(1.14) 
where si, • -rt, + e„ and m is the x-8tate mass. 

To make the connection to the branching ratio of T to charmonium, 
one can make use of Fritzsch's results by dividing out the rate 
of "g" -»• cc and multiplying by the rate of "g" •» * + g, where * 

3 denotes either n or x ( ?,)• These scaling factors which must be 
applied to the results of Fig. 2 are, for n production 

» < y - nc + g) _ 4 g 2 ( Q - V 3 

R("g" * cc) 9 iw 3 | [1/a + M ^ * ^ - Q ) ] 2 | W - m* ) 1 / 2 Q 

( l . ' S ) 
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and for x production 

2 2 3 
R("g» + x e + g) g »'(Q ~ « x ) 
X("g" - cc) 3ir«5Q|l|- + J.Ul + > - Q)] 2| 4(Q 2 - m 2 ) 1 / 2 

*c c 

(1.16) 

To apply these results to the charaonium system, the -lues of the 

bound state parameters can be determined from fitting m and m ' 

to a color coulomb spectrum (one gluon exchange potential). He 

find m • 1.9 GeV and a « .81 GeV . The numberlcal evaluation of 
c 

Eq. 1.15 and Eq. 1.16 is found In Tables 1 and 2. They need only 

be evaluated up to an Incident energy of 3.75 GeV, as above this, 

DO production dominates. 

If our "scaling factors" in Tables 1 and 2 are folded with the 

Fritzsch results of Fig. 2, one obtains for the branching ratio 

of T to n + anything 

BR(T ->• n t l ) « j i 10" S (1.17) 
and for T to x c

 + anything 
BR(T ->• x + X) * 3 * 1 0 - 6 . (1.18) 

-2 -3 Note that this branching ratio is between 10 and 10 times 

smaller than that predicted using the assumption of duality, and 

the associated implicit assumption of dynamical resonance 

enhancement. (A branching ratio of 10 to /̂ states would just 

be observable in current CESR experiments [5]). Thus, the lack 

of colored resonances allows heavy quarkonium production with soft 

gluon emission to be suppressed by limited phase space and the small 

multipole type coupling. 
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Next, we must critically analyze the approximations used in 

this calculation. 

V. Analysis of approximation 

Any calculation of a quantity to be coapared with experiment 

mist have means available to estimate neglected contributions to the 

process under consideration. He will, in order, discuis the corrections 

due to higher order gluon emission, higher order terms in the multlpole 

expansion, relativistic corrections, and the validity of the one 

gluon exchange potential for the charmonium binding. 

A. Higher order gluon emission 

In addition to the lowest order diagram where one gluon is 

emitted to effect color neutralization, there can be two soft 

gluons emitted from the QQ state. Adding a second gluon emission to 

the lowest order term results in Fig. 8. Using the form of the 

color El operator for g - QQ coupling given in E<J. 1.11, this 

contribution can be crudely estimated. 

(correction) ~ 
r 8(4) 1 i 2 A d k 2 

1 >£kf (H 8 + ^ - k°) ( 2 i t ) 3 

g (k 2a) d k 2 

1 / 2 \ V* „ o . , ,3 

(4?>r"" 
rk~\2 _ aS „ o ,2 fk2V 

— < k 2 a ) I r J 
For |k,| ~ |k,| ~ (available kinetic energy)/2 ~ .35 GeV, 

a ~ .81 GeV - 1, and e ~- .8 GeV, we find 
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_3 (correction) ~ 10 . 

This is much less than one, and indicates that higher order 

gluon emission does not contribute significantly. Also note 

that this is essentially equivalent to a "back-of-the-envelope" 

calculation of the suppression factor induced by the lowest 

order term. 

B. Neglected terms in the multipole expansion 

Our restriction to the lowest order multipole occurred during 

the following typical approximation 

[A*(R + f) - A*(R - •§)] * r-3A*(R) 

when only the first term in the expansion was retained. We expect 

that when higher order terms are kept, we generate the full gauge 

invariant expression 
, i j k 

(multipole expansion) ~ r-E + 'o y T~ 2~ Di D-i E' •*"••• 
where D. is the covariant derivative. Then, in the amplitude, 

very crudely, , 

(lowest order) -*• (lowest order) 
(ak 

1 + 24 J 
In the rate, this is less than a 5% correction. 

C. Relativistic corrections 

The non-relativlstlc Feynman rules used the following typical 

approximation 

u Y u N-R- , x
+

x + o 
.4*Q, 
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using P /m ~ e ~ .8 GeV gives P M m . ~ 0.1. This means that 

relativistic corrections could be as large as 202 in the calculated 

rates. This is not completely surprising since it is well known 

that the charnonium system has 6 $ .3, which is relatively large [6]. 

D. Validity of the one gluon exchange potential 

It has been shown that non-perturbative effects dominate the 

perturbative 1/R one gluon exchange potential for charmonium 

systems [7]. Thus, as expected, the color coulomb potential does 

not reproduce the observed charmonium spectrum. However, for the 

following reason, it is a good model potential for this calculation. 

The physical reason for the large suppression of Fritzsch and 

Strang's result is that the intermediate color octet (QQ)g state 

In the process "g" -* (QQ)g •* *g *s always held off-shell. This 

is because the one gluon exchange potential in the color octet 

channel is repulsive, and raises the threshold for "physical" 

(QQ)o production above the threshold for DD production. Therefore, 

the intermediate state is made virtual, and one never finds a 

dynamical enhancement due to colored resonances. Since colored 

resonances have not been observed out to very high energies, this 

i , exactly the physical behavior that our amplitude should ex'aibir.. 

In fact, if this calculation were done with the actual (QQ) potential, 

we might expect an even greater suppression than observed here. This 

is because the experimental lower bounds on color octet state 

masses would require the Intermediate state to be even more virtual 

than that given by the one gluon exchange potential. For this 

reason we believe our self-consistent calculation using the color 
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coulomb potential gives a reasonable order of magnitude estimate of 
the physical suppression mechanism. 
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Appendix 

A. Non-relatlvlstlc Feynman rules 

u <B'>Y 0u <E) = 
i f + + <T-p' 
v[ Xs'V fT£ 

' * 8 • 

V V 
+ 2"? 2*P 

(E'+m) (E4m) 

v V x

S

 + ° & ) 
Similarly, 

T ^ ' C B ^ V 8 ^ 
1 + (P + P ' ) k l a - [ < E ' - £) x r ^ ] 

2m + 2m 

—s,- \ o g ' , . L 1 + + 
v (P)Y v (p) — • -SX X , 

V E S 

^ ( p ) Y k v S <p'> — * & 

» <P')Y 0VS(P) — ^X 

^ ' ( p ' ) Y k v S ( p ) — | x ; , a k X s 

B. One Gluon exchange potential 

1 + |"<P + P'>k ^ - t ( E - E') « S f c l ] 
V*s L 2 m + 2 m J 

V [re; + rel x 
v s ' L 2m 2m J s 

, 2 I f 2 

H 8 - H i " |^ + T e H - R + Y r > 
V g (r) - V x (r) 
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To calculate the one gluon exchange potential* we must evaluate the 
diagrams of Fig. 9. 

2 
V 8(r) - V^r) = - f- Tr(T aT bT aT b) dt 

4i7 2 (r 2 + t 2 ) 

+ | - Tr (T b T b ) dt 
4 i r 2 ( r 2 + t 2 ) 

24irr 3nr 

is! 
8nr 

Note that the color singlet potential is at tractive, and the color 

octet potential is repulsive. 
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Figure Captions 

Fig. 1 T decay into charm + anticharm + hadrons 

Fig. 2 Branching ratio of T to charm + anticharm as a function 
2 2 2 of ? = Q /ra_ > where Q is the invariant mass squared of 

the cc pair. 

Fig. 3 The modification made to the differential branching ratio 

due to including color neutralization of the cc pair. 

Fig. 4 Gauge invariant set of diagrams for "g" -»• quarkonium + g. 

Q, k, and P are external four-momenta. 

Fig. 5 Lowest order gluon emission from QQ system, a, g, a', 6', b 

are color indices and s., s,f, s~, si are spin states. 

??£. 6 Tri-gluon insertion in coordinate space, to, x, y, z are 

coordinates, a, b, c are color indices, and \ f u, v are 

polarization indices. 

Fig. 7 QQ bound state where the potential is one-gluon-exchange. 

Fig. 8 Emission of two gluons in the color neutralization of the 
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color octet Q.Q pair, k and k_ are the gluon nonenta. 
Fig. 9 One gluon exchange potential for color octet and color 

singlet cases, a, b, c, and d are quark color indices, 
and T m are the generators of SU (3). 

i ( 
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Tibia I Table II 

Q(ln GaV) V e e 

3 . 5 0 

3 . 6 1 .3 . 1 0 - 4 

J .7 2 . 3 . 1 0 * 3 

3 . 1 2 . 5 • 1 0 " 2 

Clin Cav> v*« 
3 . 0 0 

3 .1 3 .7 . 1 0 " ! 

3 .2 2 .3 » 10"'' 

3 .3 7 .1 » 1 0 " 4 

3.4 1.7 « 1 0 " 3 

3 .5 3 .4 « 1 0 " 3 

3 . 6 6 .5 > 1 0 " 3 

3.7 1 .2 • 1 0 " J 

3.B 2 .6 • 10"* 
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CHAPTER II 

F Heson Production In e e~ Annihilation 

Abstract 

The F meson production rate is calculated on the ¥(4414) 
resonance using non-relativistic multipole expansion techniques. 
The results indicate that this production mechanism could 
account for all or part of the observed rates. 
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I. Introduction 

The charm model which successfully describes the properties of 

the established V and D mesons, requires the existence of mesons 

having both charm and strangeness. These new particles, called 

F mesons, have the quantum numbers of a charmed quark and a 

strange antlquark. The cnly evidence which supports the presence 

of the F meson in e e annihilation has been presented by DASP [1]. 

Data from Mark II places an upper limit for F-productlon which is 

close to but less than the positive result of DASP [2], It is now 

important to determine the production levels expected from theoretical 

considerations. 

As before, we hope to be able to use non-relativistic 

approximations ar*" a multipole expansion for coupling the gluonic 

degrees of freedom to the quark systems. This seems somewhat 

risky since strange quarks are involved, which only have a constituent 

mass on the order of 500 MeV. However by limiting ourselves to a 

kinematic regime only slightly above production threshold, it will 

be shown that the non-relativistic approximation is in fact 

reasonable, and the multipole expansion well behaved. 

The process considered is the production of F mesons from a 

virtual photon produced in e e annihilation. As stated above, 

this demands a four quark final state consisting of charm + 

anticharm + strange + antlstrange quarks. Figure 1 illustrates 

the production process where the Incident virtual photon produces 

a color singlet cc pair which ultimately couples to an effectively 

local gauge invariant gluon operator, which is the source of the 
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strange quark content of the final state !' mesons. Altnough the 
intermediate gluons are highly virtual andi timelike, due to the 
limited phase space available they have a small three-momentum 
component. This long wavelength probe coupled to the small cc 
system naturally lends itself to a multipole expansion. The 
expansion parameter is of order (o r>k), where r is the radius 
of the intermediate cc system and k is the three-momentum of the 
intermediate gluon (which translates into the three-momentum of 
the produced final state strange quarks); As will be shown, the 
relatively small value of this quantity affords good justification 
for our lowest order calculation. 
II. The four-quark production amplitude 

The first step of the calculation is to evaluate the four-quark 
production amplitude of Fig. 1, which must later be projected onto 
the desired FF state. The four-quark production amplitude can be 
split into two parts for computational ease. We will first focus 
exclusively upon the charmed quark production and its coupling to the 
Intermediate gluon modes as given by Fig. 2, and later attach 
the final state strange quarks. Note that only one time ordering 
is relevant for this part of the process since the produced charmed 
quarks are very massive and only slightly off shell. This part 
of the amplitude is given by 

A('V - Q C Q C + X) = -ieQc(2ir)i(Ef - E £) 

x < XQ Z\ f dtH (t)e" i H t|Q'q' > (2.1) 
C C JQ 1 C C 

dV d3?' 
X < Qc Qc l HEM < 0 ) l ' V > H 3 

c c ™ (271)-* (2TT) J 
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where H (t) is the operator which couples the charmed quarks to 
the intermediate gluon state, which is denoted by X. The evaluation 
of the first matrix element in Eq. 2.1 uses the now familiar techniques 
for coupling gluons of small three-momentum to heavy non-relativistic 
quark bound states [3]. To obtain t!i? complete gauge invariant 
local gluon operator (including the non-abelian term that was 
neglected for kinematic reasons in Chapter I), it is necessary to 
sum all the diagrams of Fig. 3. In order to get the explicit form and 
normalization of this operator, one must temporarily model the 
quark-antiquark interaction as being mediated by "color-coulomb" 
ladder exchange. Once the gauge invariant operator is obtained, 
it can be used to couple external gluons to a quark bound state 
whose internal binding mechanism deviates from a simple coulomb-like 
potential. (This is shown in the approach by Yan [3], which does 
not rely on the form of the QQ potential for the derivation of the 
multipole expansion.) The reduction of the matrix element yields 

<XQcq ifdtH (t)e-1Ht|Q^> = U i O V ^ - p ^ U i V ^ ^ p 
J0 c c c c 

* < x VU r i -72 K*? 
^ + e . - e - - p ° + i : > 

c 

* o \ ° - a°^ - 8f b a cAV> <2-J> 

where e'(e) * s the interaction potential energy of the cc p*ir in the 

color singlet (octet) state, r. is the relative separation of the cc 

pair, and (p + p ) is the energy of the emitted gluonic system. 
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Note that this is simply the non-abelian analogue of the electric 
dipole (r-E) transition familiar from electromagnetism. It is easy 
t~ show that the magnetic dipole coupling does not contribute to this 
order in the non-relativistic expansion. 

To calculate the contribution from intermediate cc resonances 
we note that the energy denominator that appears in Eq. 2.2 is 
exactly (m - Q), where Q Is the center of mass energy, and m 
is the mass of the relevant resonance, i.e. 

.2 .2 
f£_ + c 1 - E - p° - i° = ^ - + c' - e - p° - i° + 2m - 2m in r s r s m *s *s c c c c 

P' 2 

•= (2m + E' + — ) - (2m + p° + p? + e) c m c L £ 

To complete the evaluation of Eq. 2.2, we note that the expectation 
value of r. for the I « 0 bound state to free quark transition can 
be estimated without knowing the exact bound state wavefunction: 

r » v r C l x I tound state] x &c\ X I ( 2 . 3 ) 
r i i [coherence timej [m J E v ' 

coulombic bound state, and is a good approximation for a harmonic 
oscillator potential. 

We can now trivially couple the gluon fields of Eq. 2.2 
to an ss* pair as in Fig. 1 and obtain the amplitude to lowest 
order in the three moment™: 
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_ _ UeQ )<igT ) -<igT ) ? 

A<V + < W W = c

2 m

 t a a J t J £<<» 1x>.)tx x\xx-> 
S S 8 C • C 

X H-(Q-» -IT /2i' 2" V"f-V c H res res ' 

(2.4) 

where u is the virtual photon's Lorentz index, and the x's are 

non-relativistic quark two-spinors. The appearance of the factor 
3 o s (1 -- —T—) is from the sum of the tree diagram of Fig. la and 

the one loop diagram of Fig. lb [4]« This four-quark production 

amplitude can now be projected onto the desired color singlet 

final states to determine the FF production amplitude. 

III. F meson production 

To obtain the FF final states from the four-quark production 

amplitude of Eq. 2.4, we must do color, spin, and momentum 

wavefunction projections. We define rhe center-of-mass momentum 

and internal momentum of the F meson to be P = g + g and 

q = p - p , and of the F by P = g + p and q = p - g . The 

•omentum wavefunction projection becomes 

i(v 

(2TT) 3 F 

= A < V + Q CQ CQ BQ S) x *F(0) * *pC0) 
(2.5) 

where *«(*«> is the momentum (spatial) wavefunction of the F meson, 
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and all terms linear in q and q integrate to zero due to the I - 0 

nature of the F. The color projection operator to be inserted in 

Eq. 2.4 is simply 6ajj4—„ /3. The spin projections are equally simple. 

Define 

8 8 C C 

In appendix A, it is shown that for FF production 

&H = « l w , (2.6b) 
for F*F production 

C = - ^ eiMj ei ( 2 - 6 ° 
with e. being the F* polarization vector, and for F*F* production 

F*F* _ -, XX X X„ , X X, „ ,„ 
Riu - 2 ( V U - S 'S % + 4%) (2-«d) 

with e and e the polarization vectors for the F* and F* respectively. 

The projected amplitude becomes 

i(v - (QCQS) + (QCQS)) = 

2ig 2eQ ef F(0)V ?(0)R l u(l - - ;&)P 1(2ii) 46 4(P f - V±) 

3m m E(Q - m - ir /2) c s res res 

Adding on the (e e + "y") part of the amplitude, squaring, and 

(2.7) 

summing over final states yields 

o(FF - production) = 

(41.cs)2(4TOQc)2|l'F(0)|2|fF(0)|2(l - -jVmy / 2(Q - nip - *f)3/** 

. 2 - 2 E 2 ( ( Q - m r e s ) 2 + r2/4J Q 4 

(2.8) 
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where R is the statistical spin factor, and is equal to (1, 4, 7) 

for (FF, F*F + FF*, F*F*) production. An interesting feature of 

this calculation is that the quark binding interaction has not 

entered in any complicated way. The binding interaction o^ly entered 

through the F meson vavefunction at the origin, which can bt 

estimated from an experimentally determined equation [5] U3lng 

only the constituent quark masses. 

The production cross section for FF states can now be evaluated as 

a function of energy using Eq. 2.8. We use the DASP values 

nip * 2.03 GeV and m_ A = 2.14 GeV for the F meson masses. The 

constituent charm and strange quark masses are 1.5 GeV and 0.5 GeV 

respectively . using these quark masses one estimates [5] 

|¥FC0>| - 1.1 x 1 0 - 2 GeV 3, and a is defined at the mass scale 

of the bound state to which it is associated. Finally, we can 

n_w evaluate the FF production cross section contribution from 

the narrow (cc) resonance at 4.414 GeV, whose measured width is 

33 ± 10 MeV [6]. We find for all possible F meson spin states 

a F ?(Q = 4.4 GeV) = 1.4 n b ^ ^ (2.9) 

where the limits are from the experimental uncertainty in the 

resonance width. This contribution to FF production is very strongly 

peaked in energy and drops to less than 5% of its peak value as 

one tunes the energy more than 100 MeV off resonance. The spin 

state content of this cross section is in the multiple ratio 

FF:F*F + F?*:F*?* = 1:2.2:1.4 (2.10) 

The experimental cross sections, after taking estimated branching 
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ratios into account are, from DAS ""a inclusive n-productlon data [1] 

o p ?(Q - 4.4 GeV) = 5.3 nb+J;* "£ ' 

and for Hark II from nn production, the obtained upper limit [2] 

a F-(Q - 4.4 GeV) < 3 nb 

Thus our calculated F meson production mechanism could account 

for all or most of the observed rat*>. 

IV. Validity of approximations 

We will discuss, in order, the validity of the perturbative 

multipole expansion, the non-relativistic'reduction of the 

four-component quark spinors, and the neglect of possible perturbative 

final state interactions. 

A. The perturbative multipole expansion 

The roultipole expansion parameter is, very crudely a (r*k). 

Using Eq. 2.3 for r 

a
s < r b > «str)Ck) 

~ a8(ie)(P) 

where e is the QQ interaction energy (*"* m - 2m ), 8 is the 

relative QQ velocity in the resonance, and P is the final state 

three-momentum. Defining a at the scale of the ijj-resonance gives 

o.s(r-k) ~ .15 

for FF production at a center of mass energy of 4.4 GeV. Thus, 

the multipole expansion parameter seems under control. 
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B. Relativistic corrections 

The weakest possible link in the use of the non-relativistic 

Feynman rules is the reduction of the production vertex of the ss 

pair: 

»<P8>V<PB> * x s q i x i + 0 [ ^ + m ) 2 ] 

- (1 + .13) . 

This means that there could be relatively large relativistic 

corrections to our calculated rates on the order of 25%. 

C. Perturbative final state interactions 

There exist possible final state interactions as in Fig. 4. 

Figure 4a is already implicitly included through the use of the 

effective coupling constant in the lowest order diagram. The 

color trace of Fig. 4b is down by 1/N from the lowest order diagram, 

indicating that the expansion parameter here is in fact a /N , 

as expected from meson-meson scattering in the 1/M expansion [7]. 

So even for an u ~ . 7 - .4, neglect of these terms seems reasonable. 

As we can see from A, B, and C above, the approximations used 

in the calculation of F meson production seem to be under control. 

The most important test remaining is an independent reproduction 

of the DASF results. 
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Appendix 
A. Spin projections 

The normalized spln-l vectors are 

E + = - \ U, "i, 0) 

f = | a, i, o) 

g° = -i (0, 0, 1) . 
/2 

For FF production 

% - ( i f T r ( 0 i V • 5 i . 

For F*F production 

:iM - ̂ TrCa^-oV = - ^ ' i v i 4 

For F*F* production 

R. = Tr(e «o o, e -o a,) 
iu - - 1 - - P 

= 2(Vn ' S "£ Siu + Vi> 
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Figure Captions 

Fig. 1 "y" •* Q Q Q Q diagrams. X is the quark spin index, a 

and B are color indices. 

Fig. 2 The gluon/(cc) resonance coupling. 

Fig. 3 Gauge invariant set of diagrams that gives the local 

gluon operator which couples to the cc resonance. 

Fig. 4 Possible final state corrections to calculated production 

mechanism. 
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CHAPTER III 

Non-perturbative Effects In Heavy Quarkonia 

Abstract 

The effect of a non-zero vacuum gluon condensete on heavy 

quarkonia is discussed. As a function of the quark mass, it 

is determined which low lying levels of the spectrum are 

dominated by the perturbative 1/R one gluon ladder exchange 

potential. 



I. Introduction 

In QCD, due to asymptotic freedom, it is well known that the 

short distance part of the potential is dominated by ine gluon 

exchange, giving rise to a calculable 1/R potential. For the long 

distance ?*rt of the interaction, various phenomenological potentials 

have been postulated that reproduce the observed heavy hadronic 

spectrum. Since the bound state quarkonium radius dlmensionally 
i goes like r ~~ — , one of the hopes is that for very heavy quarks 
m Q 

the bound state radius will be of a size that only samples the 

known short distance part of the potential, allowing unambiguous 

theoretical calculations. A crude back-of-the-envelope estimate 

of how massive the quarks must be to see only the "color coulomb 

interaction" is made by requiring that the coulomb-like binding 

energy is much greater than some hadronic energy scale 

UaJ ^ - > 1 GeV (3.1) 
L J 4n 

where n is the principal quantum number of the coulomb bound state. 

Choosing the strong interaction scale parameter \ to be approximately 

500 MeV, and the effective coupling constant to be at the scale 

of the bound state Bohr radius yields m Q > 25 GeV for n = 1. 

It is now possible to determine more rigorously which low 

lying levels of the heavy querk bound state spectrum are dominantly 

coulombic, as a function of the quark mass. The procedure will be 

to calculate the non-perturDative power corrections to the 1/R 

potential for extremely large quark masses where these power 

corrections are known to be small, and then determine how small the 
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quark maces can become before the coulomb approximation breaks 

down. The method for studying these non-perturbative effects Is 

due to the pioneering work of Shifman, Vainshtein, and Zakharov [1]. 

Their technique is to extract the long distance behavior of 

internal lines in Feynman diagrams systematically, and parameterize 

this dynamical contribution with experimentally determined 

quantities (see Appendix A ) . As applied to a heavy quark-antiquark 

bound state, the procedure is to take the lowest order perturbative 

diagrams of Fig. 1 for gluon exchange within the QQ bound state and 

allow each gluon line to go soft individually. The soft line is 

cut, and the cut ends of the long wavelength line are allowed to 

propagate into the vacuum yielding the set of diagrams illustrated 

by Fig. 2. Note that the complete set of diagrams of Fig. 2 is 

exactly the set of diagrams considered by Peskln [2] in determining 

the gauge invariant coupling of long wavelength gluons to a color 

singlet heavy QQ bound state. These long wavelength gluons which 

are coupled to the QQ pair propagate into the vacuum and are 

"eaten" by a gluon non-zero vacuum expectation value. Note that 

this procedure is equivalent to allowing the vacuum to have non-zero 

values for the gauge fields (as given by the vacuum expectation 

values), and then asking how the QQ system behaves in the presence 

of this "external" field. 

II. Non-perturbative. corrections to the color singlet potential 

One can easily sum the diagrams of Fig. 2 as Peskin has 

done [2], using the techniques we reviewed in Chapter I. The 

well known result gives the first term in an operator product 
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expansi.cn 

(Fig. 2) = £ <» | r i

r 4 1 r r l | «><0 |gV o G^(0) |0> 

24mf 6 1 

ikl jmn 
~2~~ 

(3.2) 

where r, is the QQ separation in the bound state *, H,(H Q) is the 

Hamiltonian of the QQ in a color singlet (octet) state, o is tho 

at the origin of the bound state. It should be obvious where 

the terms In Eq. 3.2 come from. The first term corresponds to the 

* state coupling to the gluon field via an electric dipole 

interaction, propagating in a color octet state, and then going 

back to a color singlet * state via a second electric dipole 

interaction. The gluon fields which are coupled to the QQ state 

are "eaten" by the vacuum, i.e. they're color electric fields 

which persist independently in the vacuum. The second term in 

Eq. 3.2 is similar to the first except that the multipole coupling 

is a magnetic dipole, and the vacuum field is a color magnetic field. 

The energy denominator of Eq. 3.2 can be further simplified 
3g 2 

by noting that for one gluon exchange H f i - B, ~ Tp— . By 

defining E* = G°* and B* s " l e ^ G ^ , and choosing * to be a spin 

zero state, the expression simplifies to 

(Fig. 2) = < ^ ; 3 | » > < 0 | g 2 E a . E a | 0 > 
s 

(3.3) 

+ < * k | t > <o|gV.B a | > . 
9 a A 

http://expansi.cn
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Shifman et. al. have determined the vacuum expectation value of the 

square of the gluon field strength tensor from remarkably successful 

charmonium sum rules [3]. They find 

2 
, < 0 | G a G y v | 0 > H M 4 * (330 MeV)* 2 uv a ' o 4*' 

which implies (see Appendix A) 

% < 0 | B a . ? a | 0 > = - S - < 0 | E a - E a | 0 > = M4 

(3.4) 

(3.5) 

We can now rewrite Eq. 3.3 as 

(Fig. 2) - h E + h M (3.6a) 

<»lfl»> A 4 

27a o 

<»|r|«_>_ . V 
. 2 o 9a i. s Q 

lo determine how this long wavelength "vacuum gluon condensate" 

affects the bound state Hamiltonian, we will calculate the bound 

state propagator of the QQ system as illustrated by Fig. 3. 

Lim 
T 

(3.6b) 

(Fig . 3) = lim f dt e" 1 ( Hl " e l ) , : 1 + f idt h1 

T - * " 0 0 

x ll + I idt^ h M
 + 

(3.7) 

with e the color singlet bound state energy. Using the identity 
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f idt l A f 1 idt 2 A . . . f - i d t n A = i a £ (3.8) 

We can exponentiate the contributions of h and h to find the 

corrections to the color singlet Hamiltonian 

2„A -i 
s=0 s=0 

M l ^ H l 
4a 
ja 

3r 

fnV 
— : i 9« "&l < * rU > 

27a. < * r « > 

(3.9a) 

for the spin zero bound state. Going back to Eq. 3.2, we can do 

similar manipulations for the spin one bound state, yielding 

-r1 
— H S = 1 

^ H l = 3r 
f „ 2 M 4 1 IT M 

o -r1 
— H S = 1 

^ H l = 3r 
27a m* 

s Q 

+ 
f 2„4> 
It M o + 27a s 

l« > 

(3.3b) 

<*lrJ 

Note that the second terms in Eqs. 3.9 which result from the magnetic 

dipole coupling give a "hyperfine" splitting between the s * 0 and 

s = 1 states. 

Equations 3.9a and 3.9b give the leading non-perturbative 

corrections to the one gluon exchange color coulomb potential. It 

bears repeating that these expressions are only valid as long as 

the non-perturbative corrections are small compared to the color 

coulomb interaction energy, i.e. for sufficiently large m„ (small r). 
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III. Results 

We are now in a position to determine when the coulombic 

approximation is a valid one for a given quark mass, and a specified 

energy level. First note that the "magnetic" term proportional to 

< »]r|* > is always much less than the "electric" term proportional 

to < *|r |* > , for a < 1. Thus, to determine when the coulomb 

approximation is valid, we can define the ratio 

< » | r 3 | » > 

l 4 os <*3T 
(3.10) 

which is the ratio of the energy of the non-perturbative power 

corrections tc the color coulomb binding energy. If R <3< 1, the 

state * can be well described by a coulombic wavefunction. In 

Fig. 4 we plot R as a function of quark mass for the n - 1, 2, 3 

levels of the coulomb spectrum. The coupling constant in the 

expression for R is normalized to be a * .3 for nu • 1.5 GeV, 

as determined from potential model iits to charmonium [4], and 

its scale is the bound state Bohr radius, which goes as (a iun> 
s ^ 

If, for example, we decided that R < .2 implies a reasonable color 

coulomb dominance, the Is level would be coulombic for m_ > 10 Gev, 

the 2p levels for m_ > 50 GeV, the 2s level for nu > 60 GeV, etc. 

Note that the results are roughly consistent with the crude estimate 

of Eq. 3.1. 

Thus vs see that one gluon exchange dominance occurs for 

quark masses substantially larger than present energies. This is 
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as expected from the simple estimate of Eq. 3.1, but our new estimates 

are much more quantitative with a firm theoretical foundation. 

TV. Estimate of accuracy of predictions 

Two points much be addressed. The first is a guess cf the size 

of the contribution from possible higher dimensional operators in 

the operator product expansion. Secondly, we must deteralne how 

the certainty In the experimentally determined quantity, M , 

affects our results. 

A. Higher dimensional operators 

Dimensionally, we expect higher order operators such as 

D G a D G a , f a b c G a G b G C , etc. to contribute to Eq. 3.2. These ]i ua v va uv vo o\i 

should also have non-zero vacuum expectation values since rhey 

are Lorentz and color invariants. It is conjectured that the vacuum 

expectation values of these higher dimem ional operators merely occur 

with appropriate higher powers of K , t -3 jcale of the vacuum 

fluctuation". Then, higher dimensional operators contribute in 

an expans .1 of (M a ) , where a is the bound state Bohr radius and 

originat . in the dipole type coupling. This effective expansion 

parameter is on the order of .15 for m_ "•* 20 GeV, and decreases as 

1/m.. Thus the neglect of higher dimensional operators seems quite 

reasonable. 

B. Uncertainty in M 
A 

Shlfman et. al. estimate that (M ) is known to within a 

factor of two from their sum rules. Shifting the normalization 

of our curves for R in Fig. 4 by a factor of two indued an 

uncprtainty in our determination of m Q cf roughly ±25%. 
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Therefore, we see that the calculation is relatively clean, 

with he experimentally required parameters known to an acceptable 

accuracy. Since the calculated quark masses where the color coulomb 

potential dominates are above presently accessible energies, our 

phenomenological inferences are limited. However, if the top 

quark and toponium are found, our result"- I us that since m 

must be greater than 10 GeV, Me expect the wave function at the origin 

for the lowest lying state to be given by the coulomb wavefunction. 

This prediction can be checked by measuring the (tt) branching 

ratio to charged leptons. 
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Appendix 

A. Non-perturbative techniques of Shifman, Vainshtein, and 

Zakharov [1] 

1. Introduction 

Asymptotic freedom allows QCD calculations to be done at short 

distances since the effective --oupling constant of the theory 

becomes small, insuring a sensible perturbative expansion. However, 

a complete theory must also include large-distance dynamics'as well. 

What is needed in QCD is a quantitative framework in which to 

calculate large-distance phenomena. This is the subject of the work 

- .s Shifman, Vainsshtein, and Zakharov that will now be reviewed. 

The central objects studied are the power term corrections to 

the slowly varying logarithmic terms of perturbative QCD. These 

power terms are due to non-perturbative effects which limit asymptotic 

freedom calculations as one tries to extend the short-distance 

approach to larger distances. Phenomenologically, the power 

corrections are introduced 'ia non-zero vacuum expectation values 

(VEV) of gaiye invariant field operators such as 

- 0 | G ^ v | 0 > * 0 and < 0 | ^ q | 0 > * 0 

where q is the quark field and G a is the gluon field strength 

tensor. They would vanish by definition in perturbation theory. 

Sy giving these operators non-zero VEV's we will sne how they induce 

power corrections to îiort distance phenomena. 

2. Gross features of procedure 

Consider a gluon lins within a Feynman diagram. (Any type of 
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line within the diagram would be treated analogously). However, 

assume the line to be the exact gluon Green function 

21 (k 2). Splitting S (k 2) into two parts yields 

V"2> -sMV^-JH 
2 where we work in Feynman gauge for definiteness. As k -»-«>, 

£&> (k ) is given by the first term due to asymptotic freedom. 
2 Ve assume the bracketed term falls off as some power of k as 

2 
k -*• ». To get the complete answer for the Feynman diagram of 

2 interest, va must include both terms In the k -integration. The 

first term is absorbed in the standard perturbative treatment, but 

the second term gives something new. Since ay (k ) - B.«/k I 
2 is presumably large only for small k , we can expand this additional 

2 2 

contribution to the amplitude in k and approximate k = 0. In the 

expansion, we must be careful to extract the gluon field strength 

tensor, G G , so as not to violate gauge imparlance. 
2 Doing the k -integration results in a number which is sensitive 

to the gluon dynamics at large distances. If we had a complete theory 

of confinement, this could be evaluated. In the absence of this, a 

new parameter is introduced which is equivalent to the vacuum 

expectation value < 0 | G G \ 0 > . This procedure allows us to 

study non-perturbative effects in simple Feynman diagrams. Note that 

this is only feasible if all the lines except one are far off-shell 

and thus known. 

3. Example calculation 

Consider the T-product of two currents for large external 
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three-momentum q. For this kinematic regime, it is clear that the 

operator product expansion [5] is valid. Restricting ourselves to 

the current j - qv q in the imaginary world of one quark flavor, and 

assuming conventional SU(3) c o l o r> it is an easy exercise to find 

lfdWilyDV0)} = ( V v - q 2 "W 

V- Q 

a 2ira _ _ 
^ ^ V " - T C^ aY st aq)(,Y ar st aq) 

4ira _ _ 
:-6 £(qY at aq)(qY at < i) + 

2 2 where Q - - q . For simplicity, we rewrite this expression 

. ^ i j jpWyo)) = <Vv- q 2 g

l J v ) ( c i I + c H™' 

(A.l) 

+ C„G G + CJtTtVrt + 
G pv vv r 

. . . ) . 

(A. 2) 

When one takes the vacuum expectation values of Eq. A.2, one obtains 

the photon polarization operator that is used in calculating the 

rate of e e~ going to this particular quark flavor. Note that with 

the standard perturbative vacuum, only the unit operator would 

contribute as all others vanish, but by postulating < 0|w|0 > *£ 0\ 
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<0|G a G" |0 > # 0 , etc., there ere additional contributions to 
the polarization tensor. 

Defining 

%V(Q2) - \ % - l \ ^ W ) , (A.3) 
we can take the vacuum expectation value of Eq. A.l to get 

(A.4) 

+ —^-r < Olo G a G a |0 > + o k } . 12*Q4 a wv wvl 1Q6J 

where only the first few terms are written. Note that this expression 
is calculable in QCD for Q larger than the scale of the vacuum 
expectation values. 

We also have the general dispersion relation 

*« 2> - k 

where Im ir(s) is proportional to the measurable cross section for 
+ -e e annihilation into hadrons with this particular quark flavor 
content. Equating Eq. A.4 and Eq. A.5 gives a sum rule relating the 
QCD vacuum expectation values to the integrated experimentally 

determined e e hadronic cross section. This is the basic result 
of Ref. 1. A further technical point is that the information 
available from this sum rule can be optimized by doing a Borel 

transformation of both expressions for the polarization operator. 
Using these techniques, Shifman et. al. [3] determine from 

Im 7r(s)ds 
S + Q 2 

(A.5) 
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e e~ —* charm data 

< 0 | - S G " G " | Q > « (330 MeV) 4 . (A.6) 
it pv uv 

Using different processes, all of the vacuum expectation values can 
be "measured" in principle, and used to make theoretical predictions 
for other processes. 
4. The E and B vacuum fields -a -a 

Equation A.6 can be rewritten in terms of E and B fields. 
-a -a 

This is useful because the two fieldB have markedly different 
effects on a heavy quark system. (The El and Ml couplings have 
quite different effective strengths). Demanding that |E | and 
JB | have independent Lorentz invariant values puts a restriction on 
their relative magnitudes. Under a boost with velocity B [6] 

T [ E 3 + (S " B 3)] - ^rj 6(B-Ea) 

B a — > Y [ ?
a - (g x E

a)j - --*-y B(B-Ba) 

To have |E a| and |Ba| invariant, Eg - ± IB . This means 
I? I - "I? I . (Note that this is consistent with the fact 
that even though < G >_ ̂  0, we want the vacuum energy density 
to equal zero.) Using this requirement with Eq. A.6 gives 

2 2 . 
• E 2 < 0 | B a - B a | 0 > = - • f i 2 - < 0 | E a - | a i O > = (330 MeV)* . 

(A.7) 

(A.8) 
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Figure Captions 

Fig. 1 Lowest order perturbative diagrams for gluon exchange 

within a QQ bound state. 

Fig. 2 Sum of diagrams generated by cutting the soft gluon lines 

of Fig. 1. 

Fig. 3 Vacuum gluon condensate contribution to the QQ propagator. 

Fig. 4 The quantity R, as defined in Eq. 3.10, as a function of 

m n for the n - 1, 2, 3 levels of the coulomb spectrum. 
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CHAPTER IV 

Non-perturbative Calculation of the Heavy Quark Potential 

Abstract 

Non-perturbative contributions are Incorporated into the 

heavy quark potential via non-zero vacuum expectation values 

of gauge invariant operators & la Shifman, Vainshtein, and 

Zakharov. The derived potential exhibits the appropriate 

short distance 1/r behavior and the asymptotic linear confining 

potential. The calculated coefficient of the linear term 

is in striking agreement with phenomenological potentials 

that are constructed to reproduce the heavy quarkonia spectra, 

and gives the proper Regge slope. 
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I. Introduction 

The QQ color singlet potential will be calculated by including 

two contributions the one gluon exchange potential and the 

induced potential from a non-zero vacuum expectation value of the 

operator g G^ G t i v a. Intuitively speaking, the problem of Including 

the effects of this non-perturbative vacuum gluon condensate is 

equivalent to solving the process under consideration in constant 

uniform color electric and magnetic fields. Of course, the 

contributions of higher dimensional and possibly non-uniform 

vacuum fields must also be considered, and either included or shown 

to be negligible for the relevant process. The effect of this 

gluon condensate on the quark-antiquark potential can be evaluated 

quite simply using multipole techniques. The justification for this 

procedure is that as long as the size of the vacuum gluon fluctuations 

is larger than the size of the QQ system, the expansion parameter 

(k*r) is a small number. Since the vacuum condensate is effectively 

spatially homogeneous, a lowest order multipole expansion can be used 

out to relatively large distances. Of course, higher multipoles 

which couple to gradients of the vacuum fields could contribute 

when deviations from the homogeneous approximation are incorporated. 

However, as will be pointed out, these are unimportant out to a 

dist&.ice of roughly a fermi. 

The reason that this calculation is valid out to distances 

where the non-perturbative effects dominate while the results of 

Chapter III are only valid when non-perturbative effects are small, 

is that here we will sum the non-perturbative contributions to all 
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orders via a non-linear equation. We can then estimate the si2e of the 
neglected contributions, and will show that these are negligible out 
to quite large distances. 
II. Calculation of K. as a function of H„ 

The derivation begins by allowing a static QQ pair which is 
in a color singlet state and interacting via a one gluon exchange 
potential to couple an arbitrary number of times to a vacuum 
field, as in Fig. 1. (The static m -» » condition will be relaxed 
in Sec. VI, allowing spin coupling terms.) As is known from 
the one gluon exchange potential, the intermediate color octet 
QQ states are in a repulsive channel, and thus highly virtual 
with respect to the color singlet incident state (see Chapter I, 
Appendix B). Thus, the vacuum couplings clump into short periods 
of octet propagation, separated by longer periods of color singlet 
propagation [1]. Furthermore, the vacuum only contains the color 
singlet combination G a G y and pairs of gluon indices must be 
contracted. Figure 2 results from this reduction of Fig. 1. 

The two particle irreducible interaction kernel which 
describes the vacuum contribution to the color singlet propagation 
is chosen to be of the form given by Fig. 3a. One should notice 
at this point that the form of the 2P1 interaction kernel has 
been restricted by the choice of Fig. 3a. The restriction is 
that the vacuum couples to the QQ pair in a nested series of 
"rainbow" diagrams. This is a feature of the calculation that is 
necessary for computational reasons, since the combinatoric problems 
associated with non-rainbow diagrams appear to be insurmountable. 
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This approximation is not without justification however, since the 
non- rainbow diagrams are non-planar, and suppressed by 1/N to 
each order in the non-planarity. This is a general result for 
diagram topologies [2], and easily verified to lowest order for 
this process. 

Another important feature to notice about the 2FI interaction 
kernel of Fig. 3 is that the color octet Hamiltonian, H', that 
appears is not a complete physical Hamiltonian. It contains the 
one gluon exchange diagrams and coupling to the vacuum fields with 
the restriction that the QQ pair remains in a color octet state 
at all times, with no intermediate color singlet states. This is 
an obvious requirement as can be seen by reexamining Fig. 2 and 
recalling that the color singlet states tend to propagate for 
long time periods. This singlet propagation would destroy the 
localization in time necessary to couple to the vacuum field, which 
is bilinear at a space-time point. Similarly, Fig. 3b describes 
the vacuum contribution to the color octet state propagation, 
with the same restriction to color octet intermediate states. 

When iterated, these 2F1 kernels can be used to solve for 
the full color singlet Hamiltonian which includes one gluon 
exchange and the vacuum condensate contributions. Figure 3a 
gives 

(Fig. 3a) = (-iHx) 
-1T(H^ - H°) 

die ° (-iHI)dt 
0 

(4.1) 

<»8 - »1> 
H idt 
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where H, is the gluon-quarkonium interaction Hamiltoniant H« is 

the complete (but non-physical, as discussed) color octet Hamiltonian, 

and H. is the one gluon exchange color singlet Hamiitonian. Making 

the definition 

(Fig. 3a) = ih£ dt , 

we can iterate Fig. 3a to find the full color singlet propagator 

dt e lim 
T -• » 

-iCH? ie)t 
dt e 

( \ d t ^ + . . 

= lim 
X -> » 

f T -i(H° - h? - iE)t 
dt e L x 

This gives 

"l " H l " h l 

4a 
(4.2) 

H ' - H ° * 

To solve Eq. 4.2 for H~ one must know the form of H_, the 

gluon-quarkonium coupling. As stated before, the coupling of the 

uniform vacuum field to the QQ pair suggests a lowest order multipole 

interaction. The form of this interaction has been derived by 
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several authors [3]» and is given by 

£ I = I [ " ««/;«>.«) + S.'I.O.O + V V 0 > t ) + — j (4"3) 

g | d 3r *Y 0T a* I 
d a = g j <Tr r T Y o T a * (A .4) 

f 3 1 — 
m a = g I d r -j (r x *jT a*) 

with ¥ the QQ wavefunction, r the QQ separation, and T the 

generators of SU (3). Using this interaction in the static quark 

(m -»• ™) limit, Eq. 4.2 becomes 

HI = - f r - l 8 r 2

f

 X 4a, <0lgVi0> . (4.5) 
H8 + 3F 

To complete the calculation, ue must calculate H'. 
o 

III. Calculation of H£ 

The determination of H' follows exactly the same procedure 

by Fig. 3b rather than Fig. 3a. However, there is one subtle point 

that may be missed by just forging ahead with the naive manipulations. 

That point is the elimination of a potential infra-red problem 

in the determination of H'. This can be seen by looking at the 

lowest order graph contained in the 2PI kernel for R l, as given 
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by Fig. 4. For the gXuon momentum going to zero (homogeneous 

field approximation), the energy denominator for the gluon-QO vertex 

develops a zero, since the energy of the system has not been changed 

by the interaction. However, this singularity is eliminated by 

including the full (but nor. -physical) color octet Haroiltonian for 

the QQ propagator inside the rainbow diagram as in Fig. 3b. That 

this is in fact the correct procedure can be seen by looking at the 

lowest order iterations of the 2PI kernel of Fig. 3b in the 

calculation of the Hamiltonlan, H'. This is given by Fig. 5. 

Here, of course, we have a non-zero energy denominator across each 

vertex. Including potentially infra-red singular diagrams such as 

Fig. 6 would be overcounting, since this diagram is already a part 

of the expansion of Fig. 5. 

Now, Hi can be determined in exactly the same fashion as H.. 

Analogous to Eq. 4.2, we find 

P' = H-° - H T i — - H T (4.6) 
8 8 ^ - K g " J 

where H is the one gluon exchange potential in the color octet 

state. Using the form of H T given in Eq. 4.3 and Eq. 4.4, and the 

fora of H„ derived in Appendix B of Chapter I we find 

H8 = ??-2-Iir r 2 7 ^ s 7 < 0 l ^ a l ° > - «.7> 
< H 8 " 6?' 

IV. Solution for H, 

Equation 4.7 can be used to solve for Hi algebraically in terms 

of known quantities and variables, and then substituted into Eq. 4.5 



77 

to find the final expression for the color singlet potential. Using 
Eq. 3.5 of Chapter III for the vacuum expection value of E , we find 

4o TTHM r 
Hl = - 3 T + - f 3 a ° — T • (4-8) 

"(IT+N/S^] 
This is the primary result of this wort. The interesting 

features of this derived potential are that it has the expected 
4a 

coulomb-like behavior ~ - -5-=- at short distances, and a linearly 

rising potential for large r, 

2itM2 pr-
H. , • -^S-M r . (4.9) 
1 r large 3 \ 5 

Numerically, the long distance potential is 

H, = >• (.144 GeV 2) r . (A. 10) 
1 r large 

It is interesting to compare the coefficient of the linearly rising 
term with phenomenological potentials that have been fit to the 
heavy quarkonia data. Fitting the upsilon spectrum to a coulomb plus 
logarithmic plus linear potential [4] gives 

" I " ^ T a r i e ^ < ' 1 5 5 G e v 2 > r • «•"> 

If one demands that the phenomenological potential reproduces a 
-2 

Regge slope of .9 GeV » one finds 
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H r r large ' 2 ^ < ' 1 4 3 <***>* • < 4- 1 2> 

There is spectacular agreement between our derived potential and 

these phtnomenological potentials inferred from the data. Our 

potential however, has an analytic interpolating form between the 

previously conjectured long distance linear confining potential 

and the short distance coulomb-like potential. Detailed calculations 

of the quarkonium spectra using the potential of Eq. 4.8 are 

forthcoming. 

V. Spin coupling terms 

There also exist terms which couple the vacuum magnetic field 
f CT'B1 to the quark spins. Since the magnetic dipole coupling ~" - s — 

is smaller than the electric dipole coupling (~ r*E) for 

large m., we will treat the magnetic terms as a perturbation in 1/nu. 

Doing the same manipulations as in Sec. II, but including the 

magnetic dipole couplings along with the electric dipole 

couplings leads to a modified Eq. 4.2 

* as „E 1 E „M 1 M 
3r " H I „, „o H I " H I „. „o H I 

Uting Eq. 4.3 for the specific form of Hj and H , and also 

carefully taking into accout the QQ spin structure since HJ is 
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spin dependent, we find 

4a 

6m« h + ir) 

where s is the total spin of the QQ pair. Since the spin dependent 

terms are only included to lowest order in l/m„, H' is calculated 
If o 

as before by only including electric dipole vacuum couplings. 

Using the solution of Eq. 4.7 r.c H' as before, we find that H,. 

with the inclusion of spin dependent terms becomes 

(4.13) 

4a s 
~ 3r 

ir'^r" 
0 l l 

4a s 
~ 3r 

"(sr + VdT1^1) 

ItV (l - i 8(8 + 1)] 
(4.14) 

6ml[ir + sik ^o1) 

This "color hyperfine" interaction can be used to calculate spin 

splittings within the heavy quarkonia spectra, for example the 
3 1 ^( 5.) - n ( S ) mass difference. To do this requires solving 

for the wavefunction 'i ing the unperturbed potential of Eq. 4.8, 

and then calculating the energy difference using the additional 

hyperfine term of Eq. 4.14. This calculation avaits our 
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previously mentioned forthcoming numerical work. However, it is of 

interest to very crudely estimate the i|i - n mass splitting using 

hyperf 

6 m c ( 2 r + Vlfo" "^rJ 

9m2° \ 3 a s x r r ~ M 2 
\2r- + V 288 "V/ 

Just for definiteness, let us assume that this expectation value is 

dominated by the short distance part of the wavefunction. Then 

2„V o 
27a m 2 

s c 
< r > 

Using values of < r ~> = 1.2 f, a = .41, and m <= 1.6 GeV from 
s c 

Ref. 5 for the standard charmonium potential of coulomb plus 

linear term? yields 

m - m ^ 5 0 MeV . •J; n c 

This should only be interpreted as the correct order of magnitude, 

due to the gross nature of the approximations. A critical test 

awaits the detailed numerical calculations of the charmonium 

wavefunction using the potential of Eq. 4.8. However, the 

preliminary results ar« very encouraging. 



81 

V. Validity of approximations 

Two points must be investigated. First of all, the validity 

of the neglect of higher order multipole terms must be evaluated. The 

next higher order term that contributes in the expansion of 

Eq. 4.3 and Eq. 4.4 will be estimated. Secondly, the neglect ~f 

other higher dimensional operators that contain higher powers of 

the quantum fields will be analyzed, i.e. operators that are 

tti-linear in the gluon field strength tensor, etc. 

A. Neglect of higher multipoles 

The work of Yan [3] can be expanded to higher order quite 

simply, yielding for the form of the gluon-heavy quark, interaction 

Lagrangian 

+ irc5-!>V!a«>.« + ••• 
+ (magnetic terms) + ... 1 

where the definitions are as in Eq. 4.4. The next older term, 

yj-(x»V)d *E , does not contribute when summed over quark and 
1 2 antiquark, and the first non-leading term is "rrCx-V) d •£ . A 

very crude estimate of this term can be made by assuming 
2 r 2 2 (S*?) ~* Cj[) k » where k is the gluon energy* This energy is 

assumed to be on the scale of the fluctuations of the vacuum 

condensate, M . Therefore, we expect 
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Jl(*'V2ia'h " IT^o^ x < l o w e s t order). 

This means the corrected amplitude has the form 

... - 2 -\ 
1 + T x (lowest order) 

(fermirj 

The correction is less than 12% out to a distance of a fermi. Since 
the bulk of the wavefunction exists within this range, these 
corrections are expected to be quite small. 
B. Neglect of other higher dimensional operators 

The next higher dimensional operator that is Lorentz and 
gauge invariant, ard could have a non-zero vacuum expectation value 
is 

f . <0|G a G b G C |0 > ̂  0 . 
abc • yv va ay1 

It might be expected to contribute with only one higher power of 
(r*k) than lowest order. Note that this is only true for three 
color electric dipole couplings. However,, the form of this matrix 
element demands that at least one of the fields be a color magnetic 
field, and thus be down by a power of l/m0- Therefore, in the 
static quark approximation the next contributing operator will 
be quartic in the gluon fields. Dimensionally it is expected to 
contribute with roughly the same strength as the term in Section A, 
since it also is suppressed by two powers of the effective expansion 
parameter. 
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While originally it may have appeared that our derived potential's 
spectacular agreement with the phenomenologlcally motivated potentials 
was fortuitous, it now appears that the approximations made were in 
fact very reasonable. The vacuum fields are quite homogeneous, and 
thus appear effectively uniform out to relatively large distances. 
The case of uniform fields can be handled quite accurately, giving 
us very trustworthy results. 
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Figure Captions 

Fig. 1 Quark-antiquark pair interacting via one gluon exchange, 

and coupling to the vacuum gluon condensate. 

Fig. 2 Clustering of the quarkonium-vacuum field interactions 

about regions of color octet propagation. 

Fig. 3 (a) 2PI kernel describing the vacuum contribution to the 

color singlet QQ propagator, 

(b) 2PI kernel describing the vacuum contribution to the 

color octet QQ propagator. 

Fig. 4 The lowest order term of the color octet 2PI kernel. 

Fig. 5 Iteration of the 2PI kernel to generate the QQ propagator. 

Fig. 6 A potential infra-red singular term in the iteration of the 

2PI kernel to generate the QQ propagator. 
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Summary 

It has been seen that there exist several physically 

measurable processes that can be reliably calculated using 

multipole techniques within the framework of heavy quarks and QCD. 

This is extremely important because of the scarcity of quantitative 

confrontations between experiment and the conjectured theory. 

These techniques can be applied to kinematic regimes that are 

complimentary to standard perturbative calculations, and in fact 

can be extended into the realm of non-perturbative physics as we 

saw in Chapters III and IV. The multipole expansion is ideally 

suited to investigate some manifestations of the long distance 

Infra-red structure of QCD that may ultimately be connected with 

confinement. 

There are several immediate extensions of the work contained 

in this thesis that could be very useful. The f:Lrst extension is 

the numerical calculation of. heavy quarkonia spectra using the 

derived potential of Chapter IV. This will allow immediate 

confrontation between experiment and theory through comparison to 

existing if and T data Secondly, relatlvlstic corrections to the 

derived potential can be incorporated through a Bethe-Salpeter 

formalism. This is useful since the i|» system is believed to have 

important relativistic corrections, and it would also allow the 

determination of spin-orbit couplings which could be compared 

to existing x-state splittings in the charmonium systems. 


