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TOPICS IN THE THEORY OF HEAVY QUARK SYSTEMS
by
Curt Alan Flory

ABSTRACT

Due to the kinematic and dynamic simplifications possible
because of the large mass of heavy quark bound ststes, certain
prcperties of these systems can be quantitatively analyzed
within the framework of Quantum Chromodynamics. It is clear
that dimensionally the size of the bound state is proportional
to the inverse quark mass, and for very heavy quarkonia the
radius of the system should become smaller than that of normali
hadrons. When this small system interacts with externmal long
wavelength field quanta, the natural expansion that results
is of a multipole type, analogous to the familiar multipole
expansion in electrodynamics. This multipole expansion
has better convergence properties than the standard
perturbative treatment in certain kinematic regimes, which
opens up a new area for strong interaction physics calculations .
More specifically, it is ideally suited to investigate soft
non-perturbative effects in QCD which appear to be s8» crucial
to present day phenomenology and the conjectured confinement
mechanism.

This work will utilize the heavy quarkonium multipole
expansion to analyze several intereating processes. Chapter I

is concerned with the production of heavy quarkonia from the



decay of even heavier quarkonia.——u specifically the production
of charmonium bound states from the decay of the T(9.4).
Chapter XI contains a calculation of F meson production in

e+é- annihilation. Chapter III and IV are both concerned with
the inclusion of non-perturbative effects in the heavy quark’

potential using multipole techniques. The long wavelength

non-perturbative gluon cond te of Shifman, Vainshtein,
and Zakharov 18 used to fiist determine when the perturbative
1/R potential for ultra~heavy quarkonia breaks down, and then

to actually calculate the complete heavy quark potential out

to a distance of roughly a fermi. This generates a potential
which goes like 1L/R at short distances, and becomes linear

in R at large distances with a calculable coefficient which is
in spectacular agreement with phenomenologically conjectured

potentials.
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Introduction

The discovery of the y in the fall of 1974 [1] marked the
beginning of a new way to study the strong interactions. The ¥ is
interpreted to be the bound state of a heavy quark and its antiquark,
with the new quark flavor, called charm [2], adding a mew quantum
number to the "old" hadron spectroscopy. The addition of another
quantum number, or degree of freedom, to hadronic states was in itself
not’ so exciting. The excitement was generated by the fact that the
mass of this new quark is roughly 1.5 GeV, which is large when com-
pared to typical masses of the strong intecractions. While the old
mesons suffered from the fact that the bound state quarks are
extremely relativis:ic (i.e. mass differences on the order of the
masses themselves), it was conjectured that these heavy objects
within the bound state might be moving clowly, and the powerful
methods for studying non-relativistic systems might be relevant.
The fact that the low-lying charm-anticharm quark bound state has
a mass of roughly 3.1 GeV, and the threshold for producing a charm-
anticharm pair that separates and fuses with light quarks 1is only
about .6 GeV higher indicates that the ec pair is indeed "loosely
held" in the bound state and perhaps non-relativistic. Subsequent
calculations of the charmonium spectrum using non-relativistic
potential models have had remarkable success, and the physical
plcture of loosely bound, slowly moving heavy quarks is believed to
be accurate. Further verification of this interpretation was
obtained with the discovery of a still heavier quark bound state,
called bottomonium, in the spring of 1977 [3]. This bottom~

antibottom quark bound state is believed to be even more non-



relativistic than charmonium, and an even better laboratory for these
techniques.
Besides the kinematic simplification that occurs due to the
heavy quarks being non-relativistic, there is alsc a dynamic simplifi-
cation that the large quark mass induces. This dynamic simplification
is dependent upon a prcperty of the currently conjectured theory of
quark dynamics (i.e. strong interactions) called Quantum Chromodynamics
(QCD) [4). QCD is a nonabelian gauge field theory of the interactions
of "colored" quarks and eight self-interacting (color charged) mass-
less vector gauge bosons, the gluons. An interesting property of this
theory is asymptotic freedom [5), which very simply and qualitatively
stated is that the effective coupling constant of the theory becomes
smaller as the invariant mass of the fundamental particles involved
in the interaction process becomes larger. The hope then becomes
that these heavy quarkonia states will lend themselves to sensible
perturbative expansions since the coupling constant of QCD, L 1s
a reasonably small expansion parameter for sufficiently heavy states.
While the conjecture that the heavy quarkonia are non-relativistic
bound states has been verified and exploited, the hope of doing
simple computations as a perturbative expansion in a, has met with
serious problems. Most notably, the calculation of the first non-
leading contribution in ag for the strong decay of pseudoscalar
quarkonium exhibits a breakdown in the perturbative approach [6].
The problem is that even for the heaviest quarkonium states presently
accessible, the T family, the first order radilative corrections
appear to be at least 502 of the lowest order annihilation term.

This is a subtraction scheme dependent result but appears to remain



a problem in any scheme. It appears that oy is not yet small enough
at these mass scales to counterbalance the large coefficient. in the
perturbative expansion. Thus, it appears that asymptotic freedom
cannot be exploited for these heavy systems, and our "perturbative
hands are tied.”

The lack of a naive perturbarive expansion for coupling external
gluons to a quarkonium bound state is not an insurmountable problem.
Another property of the large quark mass can be used to advantage.

It is clear that dimensionally the size of the bound state is pro-
portional to the inverse of the quark mass (the constant of pro-
portionality includes powers of the coupling constant). For heavy
mass quarkonia, the radfus of the system should become smaller than
that of normal hadrons. If tials small system interacts with long
wavelength probes, the nacural expansion that results 1s of a multipole
type. Intuitively, there is a qualitative analogue in the coupling of
neutral atoms to long wavelength extermal photons in QED., The
expansion parameter for that process changes from the naively

expected uE to uEH(Lc ° :)2, where k is the 3-momentum of the

M
external photon and ¢ is the separation vector of the atomie
const{tuents. TFcr soft photons (A >>r), the expansion parameter
GEH(B ~:5)2 < S and t;1e~ expansion is much better than naively
expected. The origin of the additional suppression factor of (k ;)2
is that the long wavelength probe (photon) sees a very close pair of
opposite charges, both of which it couples to. A partial cancellation
occurs when both couplings are summed, and the remaining contribution

ie due to the photon field not being homogeneous over the size of

the atom, i.e. the neutral atom only couples to gradients of the



external photon field, which are proportional to powers of the
3-momentum for free fields. For QCD we can investigate a similar
kinematic regime where long wavelength gluons are coupled to small
color singlet quarkonia, and naively hope to improve our expansion
parameter from o to us(l_t . 1_')2 via the same type of phyzical
mechanism as above, and thus have a reliable methodology for a
class of strong interaction calculations.

There are differences between QCD and QED which make this
program somewhat difficult to implement. The complications stem
from the fact that QCD is a non-abelian gauge theory, which means
that the gauge fi;lds are themselves charged and thus couple to one
another. This complicates the problem of finding the gauge invariant
effective multipole interaction for the following reason. All
diagrams must be summed to each order in perturbation theory to have
a gauge invariant set. For QED, the complete set of diagrams for
coupling a photon to an atomic system bound by the one photon
exchange potential is given by Fig. 1. For QCD however, the complete
set of diagrams for coupling a gluon to a quarkonium system bound by
the one gluon exchange potential is given by Fig. 2. It is fig. 2C
that causes complications and is a manifestation of the non-abelian
nature of QCD. We can see that the derivation of the QCD multipole
expansion appears to depend critically upon the form of the binding
potential of the quarkonium system, since the external field actually
couples to the bound state exchange quanta.

Another complication that ari:es in the non-abelian case is due
to the fact that coupling of the color singlet quarkonium to an

external gluon field changee the bound state color charge — it changes



from & color singlet to a color octet. The QJ state in a color octet
1is radically different from the color singlet state. For the cal-
culeble one gluon excheage potential, the color singlet is in an
attracuive channel and the color octevr is repulsive, Furthermore,
it has been conjectured that only cnlor singlet nadronic states
even exist asymptotically. Thus, a color singlet QQ state that
couples to an exterral gluon as in Fig. 1 becomes a highly virtual
color charged octet state ancd must couple agsin to an external gluon
field to color neutralize. This is illustrated in Pig. 3. Thus, the
Qi'D multipole expansion would appear to be quite different from that
of QED, i.e. the color : inglet bound state must couple to more than
one external gluon fiecld to return to an asymptotic coler simglet
state, and these gluon~-quarkonium couplings ar: tightly localized
about the color octet intermediate states due to the octet states'
high wirtuality [7].

Even with these complications as mentioned above, a multipole
expansion for Fhe soft gluon-heavy quarkonium coupling can be
derived [7], {B]. The expansion has the basic propzrties that were
physically motivated previously using the QED analogue, 1.e, the
expansion parameter has very roughly been improved from o to us(g ~§)%
This opens up a new region for reliable strong interaction cazleniations
which have a well behaved series expansion. Not only does it make
possible certain straight perturbative style calculations, but it also
allows one to get a handie on the soft non-perturbative effects in
QCD which appear to be so crucial to present day phenomenology and

the conjectured coufinement mechanisn.



The effective interaction Lagrangian for the QCD multipole

expansion which will be exploited throughout this work has the form

L= I1-QA0(0,t) + 3 E (0,8) +m B,(0,t) + ... ]

where

k3
g I d”r ‘l’YoTa‘l’

=
L}

3 -
d gfd’r ¥y T ¥
n =gf & %(g x i_yTa‘l’)

with ¥ the QQ wavefunction, r the (§ separation, and Ta the generators
of SUC(B). The explicit form of the dipole couplings wili be derived
in Chapter I, and then used in later chapters. When higher order
multipoles are necessary to estimate neglected terms, we will directly
use the results of Ref. 8.

In this thesis, several topics which have the unifying thread
of utilizing the soft gluon-heavy quarkoniuvm coupling will be investi-
gated. Chapter I [9] is concerned ‘with :the production of heavy quark-
onia from the decay of even heavier quarkonia— more specifically the
production of charmonium bound states from the decay of the T(9.4). The
soft gluon-heavy quarkonium coupling is needed due to the fact that for
this process, the charmonium final state is produced from a single
(color octet) gluon and must radiate another (soft) gluom to color neu-
tralize, This final state cclor rearrangement is shown to greatly sup~
press thebranching ritic to charmonium. Chapter II contains a calculation

of F meson production (scates of net charm and strangeness) in e+e-



annihilation at the energy of the ¥(4414) [10]. As this energy is
just above FF threshold, the soft gluon techniques are once again
useful, We find that our production mechanism can account for at
least a large fraction of the observed rate.

Chapters III and IV are both concerned with the inclusfion of
non-perturbative effects in the heavy quark potential. The general
procedure 1s to accept the hypothesis of Shifman, Vainsghtein, and
Zakharov that the long wavelength non-perturbative structure of QCD
can be parameterized by non~zero vacuum expectation values (VEV) of
certain gauge invariant field operators [i1]. The VEV's are determined
from experiment, and then can be used to calculate non-perturbative
effects in other processes. We use the soft gluon-heavy quarkonium
coupling to incorporate the effects of these long wavelength VEV's on
the heavy QQ stete. Chapter III determines when the 1/R potential,
which is dominant for ultra-heavy quarkonia, breaks down due to
non-perturbative effects [12]. Chapter IV is a more sophisticated
calculation that actually determines the heavy quark potential out
to a distance of roughly a fermi by incorporating the perturbative
one gluon exchange potential and the relevant non-perturbative effects
within the framework of Shifman et al.'s VEV's. The derived potential
is in spectacular agreement with proviously conjectured phenomenolog-
ical potentials fit to the data, and has a linearly rising confining
potential with precisely the correct coefficient to reproduce the
Regge slope [13].

Finally, we close uith a short summary and mention possible

extensions of this work.
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Figure Captions
Fig. 1. Photon coupling to system bound by cne photon exchange
potential,
Fig. 2. Gluon coupling to quarkonium system bound by one gluon
exchange potential.
Fig. 3. Quarkonium color singlet to color singlet transition via

lowest order gluon emission.
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CHAPTER I

Quarkonium Production Via The One Gluon Mechaniem

Abstract

Using multipole techniques within the framework of
Quantum Chromodynamics, it is determined that quarkonium
production from a single virtual gluon is suppressed due
to the lack of colored resonances. The branching ratio to
charmonium in T(9.4) decay is estimated to be between 1072

and 1('1-3 times smaller than previous estimates.



I. Introduction and review of previous calculations

As previously discussed, there are several powerful techniques
available for dealing with heavy quark states — most notably the non-
relativistic approximation and the multipole expansion. A candidate
process which deals with only heavy quarks is the production of heav;,
quarkonia in the decay of still heavier QQ states. Within the frame-
)

work of QCD, it is supposed that a heavy quarkonium state P =1
decays into three gluons which materialize by fragmenting into hadroms.
We expect heavy flavors to be produced in this process only through a
virtual timelike gluon of large invariant mass. The process is
illustrated by Fig. 1.

The total rate for producing heavy flavors in ihe final state
for this process has been estimated [1]. The estimate is based upon
an analogue to electromagnetic heavy flavor production in efe”
annibilation. It is well known that in e'e  annihilation the cross
sectinn for producing a specific flavor is roughliy equal to the cross
section for producing a free pair of quarks, if one averages over
resonance bumps [2]. This same {dea of duality was applied to heavy
flavor production in quarkonium decay by calculating the rate for
production of a pair of free heavy quarks, as in Fig. 1. The authors
of Ref. 1 thus determine the branching ratio of the T(9.4) to charm +
anticharm (c€) + two gluons. The branching ratio is given as a
function of the dimensionless parameter £, which 15 defined as
Qzlmi, where Qz is the invariant mass squared of the produced charm-
anticharm pair. Their results are summarized in Fig. 2. The total
branching ratio to charmed particles is obtained by integrating the

differential branching ratio, p(£), over the entire kinematic range

13
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of £. To obtain partial branching ratios, onme can iIntegrate p(g) Just
over the energy range which contains the desired final charm state.
The charmonium spectrum consists of the cc bound states
n("s3, ¥(s5, and x(E;) which extst below the threshold for
producing states which contain a partizle with charm +1 and a particle
with charm ~1. These "net charm" particles consist of a charmed quark
combined with a light flavor antiquark, and are called D m2sons. It
is assumed that when the above differential branching ratio is
integrated from the miuimum Q2 up to (ZmD)z, w2 obtain the branching
ratio to find the final state charm manifesting itself as the char-
monium cc bound states (nc, VY,x). Furthermore, integrating p(£) from
(ZmD)2 up to the maximum Q2 glves the branching ratio to DD final
states. The authors of Ref. 1 find branching ratios of 2.7% to DB,

and 1.1% to charmonium in the decay of the T.

II. Necessary modification of the previous result

Essential to the referenced authors' determination of the branching
ratioc to charmonium bound states is the assumption of du:.lity.
However, this does not seem a reasonable assumpticx since the produced
cc pairs are not produced in a color singlet state. Since colored
resonances have not been observed, one should not. expect dynamical
enhancement of cc production through the one gluon mechanism at
discrete (bound state) energies, and thus not have an operative
version of duality working. Instead, one must calculate the rate
for the specific color singlet final state desired. This means that
the process "g" -+ (cc) + g must be calculated, and then used to
replace the subprocess "g" -+ cc that appears in the work of Ref. 1.

The modification that our work [3] incorporates is symbolically given
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by Fig. 3.

The lowest order diagrams that must be calculated to obtain a
gauge invariant result are those of Fig. 4. In words, they correspord
to heavy quark-antiquark production via a virtual gluon, followed by
propagation of the system in a color octet state, with the subsequent
emigsion of an on-ghell gluon which is coupied either directiy to a
quark (Fig. 4a, b) or to a virtual gluon exchanged between the quark
lines (Fig. 4c). It is expected that the emitted gluon can be treated
as free, since how it eventually combines with the other color octet
fragments invo a color singlet hadronic state should be explained by
duality, i.e. it hadronizes with unit probability. The remaining quark
system is then projected onto the desired color singlet state. The
justification for doing a perturbative treatment of soft gluon
emission is based upon our previous multipole arguments, This is :
"quasi-dipole" type coupling of a lomg wavelength probe (gluon) to a
small source (quaerkonium), which conspires with limited phase space
to give a small effective expansion parameter suppressing higher order
soft gluon emission. For this same reason, we must restrict ourselves
to final state charmonium and not (cq)(cq) final states (where q denotes
a light quark).

In order to illustrate the mechanics of heavy quarkonia production
and to specifically estimate the branching ratio of T to charmonium,
we will assume the charm-anticharm potential is reasonably approxi-
mated by the lowest order perturbative one gluon exchange potential.
This approximation should yield an order of magnitude estimate for

charmonium, and will become increasingly more accurate as one deals



with heavier quark systems. In the following we will refer to the
cc pair as a Qﬁ pair to emphasize the generality of the derived
expressions.

The calculation of the relevant S-matrix element begins by
adopting a modified interaction picture where the Hamiltonian is
divided into an external perturbative part (HE) which describes the
coupling of the G system to external gluons, and a part treated "non-
perturbatively" which describes the internal interactione of the QQ
system, The internal Hamiltonian for the QQ system in the attractive
(repulsive) color singlet (octet) state 1is HI(HB)' The lowest order
S-matrix element for the process "g" + ¢ + g, where ¢ generically re-

fers to a QQ color singlet bound state, is

§ = - 2n8(E; - E;) <o g|j:° dt A (£) expl- i(Hg + e;)t]H (0} ["g" >
(1.1

with € the binding energy of the state ¢. Inserting a complete set
of intermediate colerr Sctet states and rotating to Euclidean space

yields

s = 2m18(E; - E) <g olL"d: Hp(t) expl-(Hg + ;)] [0d>,

3 3
vad vd
%" P

<QQ|H_(0)]"g" > . (1.2)
3 om] B E

)

Note that here we see where the damping due to the octet virtuality

comes in. The first matrix element in Eq. 1.2 ig :(ho difficult part

16



of the calculation. It contains the soft gluon-heavy quark state
coupling in the form (Q(Tg)8 +¢g. It's evaluation will be the topic
of the next section, and we will find the beginning of the awaited
multipole expansion.

III. Form of the soft gluon~heavy guarkonium coupling

To evaluate the (Qﬁ)8 + ¢g matrix element we closely follow the
techniques developed by Peskin [4] in deriving his operator product
expansion for heavy quark systems. Due to the spezific matrix element
we are calculating, we shall see that the only diagrams we must
calculate are those of Fig. 5, It remains to show that this is a
gauge invariant set of diagrams and that all the diagrams are the
same effective order in the coupling constant. Using the non-
relativistic Feynman rules given in Appencix A, and restricting the

emitted gluon to timelike polarization, Fig. 5a + 5b can be reduced to

.33
120 @, -2 a1 5

\ 1
V3/2(2k°)1/2 ¥ 5157 5,5,

(5a + 5b, timelike) = -

x < ¢| [A:(r,R + %r) - Ag(r ,R - il—r)] exp[~(H, + El)r]drl(ﬁ%
(1.3)

where R 1s the center of mass coordinates of the ¢, r is the
relative quark spacing, and the A field has been made dimensionless.

Furthermore, the approximation can be made that

A, R+30) - AG, R-30)) = ¢ - & &G, B + 0(xk )’

3 l,'r
-~ n=0 n!

4
-

n
"GP At R
(1.4)

d

17



vwhich neglects terms of order (|§|r)3 and keeps all powers of
(kolcl)- Doing the now trivial T integration yields
1e2n3sd@, - p,) (eT)
£ 1 bag

(5a + 5b, timelike) = -~ [ s 6 .
v3/2 (2k ) 1/2 /3 8181 525

©
x X <¢]r -——1——|06>(3 )n(aiAb).
i n+l 8 o (]
=0 (H, + €.)
8 1
(1.5)
Note that this looks like the bzginning of an electric dipole
transition, i.e. the (QQ), state propagates via the S energy
8 (H8 + €)
denominator, then couples to r * YAO, with an outgoing gluon and
(qﬁ)l final state. The expression YAO is the beginning of the
gauge invariant field strength tensor. Next, evalvating Fig. 5a + 5b
using the rules of Appendix A, and restricting the emitted gluon
to be of spacelike polarization yields two terms of different spin
structure. The gpin singlet term corresponds to the spacelike
gluon coupling to the quark color convection current, and yields

after manipulations similar to those used deriving Eq. 1.5

@@, - 2 (eTy .
. 8
V2 ()2 A 518] 555,

(5a + 5b, spacelike) = -

© 2pi b
1 — n
x T <ofR—nuL —jag> ()%, .
s B g 4yl 8'%7 %4
8 1
(1.6)
Note that the sum of Eq. 1.5 and Eq. 1.6 does not give a gauge

invariant result. The spin f£1lip term corresponds to the spacelike

gluon coupling to the quark spin current, and yields the independently

18



gauge invariant expression

1(21r)363(P£ - 7)) (),
v3/2

(5a + 5b, spacelike) =
x)t? 7

w | ]
1 n [ x aP]
* EX+°X 8 <¢I——'———"QQ>(3) ___

=0 51 378 825 (ug + el)"“'l m

1
(Hg + € )

] >-(3 " 1§_§ __l_

+ & < ¢}

X o.X o)
slsi s, 3'55 n+l

(1.7)
where x 3s the non-relativistic quark two-component spinor. In order
to evaluate Fig. 5c, we first isolate the effective interaction
induced by the three-gluon-vertex. This is done by calculating Fig. 6
in the limit of (x - y) -+ 0. Also'note that the legs which ultimately
connect to quark lines have timelike polarization to lowest order in

p/mQ. Therefore, in Feynman gauge, with X = j = spacelike

1 1
(Fig. 6) ~ (x)Jd w(aJ SN -
b cAb y An (x - w) Anz(y - )"

which reduces to
(x)(y ~ x)
(Fig. 6) = ——ﬂ-——l (1.8)
4n? (y - x)

We can now make the insertion of Fig. 6 onto the quark lines which

yields Fig. 5c. After manipulations similar to those used deriving
Eq. 1.5, we find
ien3sS e, - ) L2 (et
£ i’ 3 b’aB

(Fig. 5¢) = 2B v '
2 (2k0)1/2 87 A3 8181 5,8,

At r s
: i 1 O
x E<o| Fm———m | @ ()8 . (L9
n=0 (HB + cl)



However, thie term can be written in a way which makes manifest the

fact that it is effectively the same order in gz as the terms from

Figs, 5a and 5b. This is done by using the re’ation

HS - Hl = 332/8ﬂr vwhich is derived in Appendix B and valid for QCD

in Coulomb approximation, and the commutation relation

[HB'ri] - Zipi/m , which yields
1em s 2, - ) s,

)
= b’af
(Fig. 5c) = § .6
y3/2 (2k°)1/2 3 5,81 8,85

x T |<elr, —E2— |@>0)" & (1.10)
n=0 (H8 + el)

Zipi
+<o]-—2 L jag> )" A .
o Z\a~i B o i
(H8 + £y}

Note that the first n = 0 term in Eq. 1,10, which is a potentially
gauge non-invariant contribution, is zero because of the specific
process computed, i.e.

LIPS 3 3 3 ~ (43 3 ~
< o|z-a |qq >8 d de g 8 (pQ-l-pa) .[d ra(rix ApS (r) ~0
since ¢(r) is finite as r + 0. Now adding together Eq. 1.5, 1.6,
and 1.10 yields for the non-spin-flip part of the sum of diagrams
5a, 5b, and 5c, the gauge invariant expression (to lowest order)

120’6, - 2)) (18T,

(Fig. 5) = - 'K
V3/2 (2k°)1/2 3 8,81 8235
(1.11)
x T<olr, ——|f >1(3 )" (01 - 2°1))
ns0 i (Bﬂ + El)n+1 8 o Ab Ab

while Eq. 1.7 is the gauge invariant expression for the spin flip

part. Now that we have the gauge inv.riant expressions for the
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(Qﬁ)‘3 + ¢ + g natrix elements, we can go back snd evaluate the
S-matrix elements of Eq. 1.3 for specific final state ¢'s. Note that
Eq. 1.7 corresponds to a color magnetic dipole transition, and
Eq. 1.11 corresponds to a color electric dipole traneition.

In retrospect, it should be no surprise that the diagrams of
Fig. 4 are the complete gauge invariant set. The reason is that we are
coupling an external gluon to a bound state, as given by Fig. 7 for the
one gluon exchange potential. If we connect the external gluon in
all possible ways to the bound state, to lowest order we generate
just the set of diagr~ms given by Fig. 4.
IV. Results for charmonium production

Using Eq. 1.7 and 1.11 we can now evaluate the S-matrix
elements of Eq. 1.3. The possible quarkonia final states are the
n(lso) and the x(3PJ). The ¥ state is not allowed due to charge
conjugation invariance. For n(lso) production only the color
magnetic dipole transition operator of Eq. 1.7 is of relevance
due to the spin structure, i.e. "g"(3sl) + Q5(3SI) + 03(150) + 3(351)-
Doing the spin = O projection, the sum over all n, and substituting

p‘z)lmQ +eg for HB’ the amplitude for "g" -+ n + g becoues

_1entta - - 0tk x g o

S[n(ISO)J =

(2Q)1/2 (2k°)1/2 v /5 (2")3

x <ls | L | @ > (1.12)
m(e.r - ko) + pQ - 1e

where ga and gb are the polarization vectors of the incident and

final state gluons, and Ep = £ + Eg- Note that the amplitude



has the expected physical behavior of developing a finite absorptive
part when ko > Eps i,e, when Q > ZmQ + Egs which is the threshold
for "physical” intermediate colored states. Using the coulomdic
1S bound state wavefunction for the matrix element, squaring the
amplitude and summing over final states, yields for the rate

g~ 'n)3

R("g" +n+g) = (1.13)
36n°qa> | [% +/me; ¥ - Q)]z | z

a
where a is the Bohr radius. For x('PJ) production, spin structure
demands that only the color electric dipole transition operator of

Eq. 1.11 contributes to the amplitude, i.e. "g"(3sl) - Q6(351) -

QE(JPJ) + 3(351). We find the 31’J states produced with their
scatistical weight RJ-U:R'T-]':RJ'z equal to 1:3:5 and

ga(Q - mx)3m2(2.1 +1)
R e I AT
4321°Q ([ alep +m - Q) + 570" | a

(1.14)

R[“s" d x(JPJ) + s]

vhere e,i, = —:-cl + g and mx 18 the yx-state mass.

To make the connection to the branching ratio of T to charmonium,
one can make use of Fritzsch's results by dividing out the rate
of "g" » cc and multiplying by the rate of “"g" + & + g, where ¢
denotes either n, or xc(3PJ). These Bcaling factors which must be

applied to the results of Fig. 2 are, for n. production

2 3
R("g" + ne +g) 4g7(Q - ll“ )

e
Nty oo 3 /mle. + 1 - Q 212,42 -n2 ’
R("g cc) 9na”}[1/a + m(e, + unc Q1% “q Ilnc)]./ZQ

1.8

22



23

and for x production

2.2 3
R("g" + Xe +g) gm(Q - -X )

Tz
a

= c
R("g" + co) 31mSQ|[]2'— LGRS D1%14@? - :ﬁ )
© c
(1.16)
To apply these results to the charmonium system, the -lues of the
bound state paramcters can be determined from fitting mw and nw'
to a color coulomb spectrum (one gluon exchange potential). We
find m_ = 1.9 GeV and a = .81 GeV''. The nusberical evaluation of
Eq. 1.15 and Eq. 1.16 is found in Tables 1 and 2. They need only
be evaluated up to an incident energy of 3.75 GeV, as above this,
DD production dominates.
1f our "scaling factors" in Tables 1 and 2 are folded with the
Fritzsch results of Fig. 2, one obtains for the branching ratio
of T to ne + anything
BR(T + n_ + X) % 3 x 107 (Lin
and for T to Xe + anything

BR(T » x + X) * 3 x 108 . (1.18)

Note that this branching ratio is between LO-Z and 10-3 times
smaller than that predicted using the assumption of duality, and
the associated implicit assumption of dynamical resonance

2

enhancement. (A branching ratio of 10" to ¢ states would just

be obgervable in current CESR experiments [5]). Thus, the lack
cf colored resonances allows heavy quarkonium production with soft
I

gluon énisaioh to be suppressed by limited phase space and the small

multipole type cnﬁpling.
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Next, we must critically analyze the approximations used in
this calcuiation.
V. Analysis of approximation

Any calculation of a quantity to be compared with erxperiment
must have means available to estimate neglected contributions to the
process under consideration. We will, in order, discuis the corrections
due to higher order gluon emission, higher order terms in the multipole
expansion; relativistic corrections, and the validity of the one
gluon exchange potential for the charmonium binding.
A. Higher order gluon emission

In addition to the lowest order diagram where one gluom is
emitted to effect color neutralization, there can be two soft
gluons emitted from the QQ state. Adding a second gluon emission to
the lowest order term results in Fig. 8. Using the form of the
color El operator for g - da coupling given in Eq. 1.11, this

contribution can be crudely estimated.

]
8k 2) 1 2 ok,
(correction) ~
JZk;’ (g +e; - k) 2m?3
3
g (k )’

‘<£>] % (23
_ % o.2 k)2
5 (kp2) [e_]

For ]k1| ~ |ky| ~ (available kinetic emergy)/2 ~ .35 GeV,

~ .81 cev‘l, and £ ~ .8 GeV, we find
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(correction) ~ 10.3.

This is much less than one, and indicates that higher order
gluon emission does not contribute significantly. Also note
that this is essentially equivalent to a "back-~of-the-envelope"
calculation of the suppression factor induced by the lowest

order term.
B, Neglected terms in the multipole expansion

Our restriction to the lowest order multipole occurred during

the following typical approximation
b r b . b
[AJ(R+3) - A(R=-3] ~ £-2A(R)

2 {r+3l{r-alir-sj,b
a7 |==||l=—=]||=—=]A (R een
* 3~[2)[2)[2)°()+

when only the first term in the expansion was retained. We expect
that when higher order terms are kept, we generate the full gauge

invariant expression
(nultipol ansion) ~ rE® + 1 EE.Ei EE D,D,E2 +
pole expansion) ™ r-E" + 35757 3 DB * ...

where Di is the covariant derivative. Then, in the amplitude,

very crudely,

(lowest order) -+ (lowest order) [ 1+ 2:

(ak )2 ]

In the rate, this is less than a 5% correction.
C. Relativistic corrections

The non-relativistic Feynman rules used tha following typical

approximation
. N.R + PZ
Uy U —"20 5Ty 4 Of—=| .
o 4m2

Q
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ising lemq ~ €~ .8 GeV gives P2/4m§ ~ 0.1. This means that
relativistic corrections could be as large as 20% in the calculated
rates. This 1s not completely surprising since it is well known
that the charmonium system has 82 :S .3, which is relatively large [6].
D. Validity of the one gluon exchange potentiel
It has been shown that non-perturbative effects dominate the
perturbative 1/R one gluon exchange potential for charmonium
systems [7]. Thus, as expected, the color coulomb potential does
not reproduce the otserved charmonium spectrum. However, for the
following reason, it is a good model potential for this calculation.
The piaysical reason for the large suppression of Fritzsch and
Streng's result 1s that the intermediate color octet (QH)B state
in the process "g" -+ (Q'c'g)8 + 0g is always held off-shell. This
is because the one gluon exchange potential in the color octet
channel is repulsive, and raises the threshold for "physical"
(QE)8 production above the threshold for DD production. Therefore,
the intermediate state is made virtual, and one never finds a
dynamical enhancement due to colored resonances. Since colored
resonances have not been observed out to very high energies, this
i, exactly the physical behavior that our amplitude should exnibir,
In fact, if this calculation were donme with the actual (4Q) potential,
we might expect an even greater suppression than observed here. This
is because the experimental lower bounds on color octet state
masses would require the intermediate state to be even more virtual
than that given by the one gluon exchange potential. For this

reason we believe our self-consistent calculation using the color
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coulomb potential gives a reascnable order of magnitude estimate of

the physical suppression mechanism.
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Appendix

A. Non-relativistic Feynman rules

RIS

Similarly,
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B. One Gluon exchange potential
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2 2
P ?
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Vg(r) - vl(r)
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To calculate the one gluon exchange potential, we must evaluate the

diagrams of Fig. 9.

2
V() - V() = - & Te(rrPrr®y| —9t
8 1 4 hﬂz(rz + tz)

2
v maty | S
4r7(r" + t%)
2 2
= + £
247r 3nr
- 3
8nr

Note that the color singlet potential is attractive, and the color

octet potential is repulsive.
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Figure Captions

1 T decay into charm + anticharm + hadrons

2 Branching ratio of T to charm + anticharm as a function
of & = Qzlm% , where Q2 is the invariant mass squared of
the cc pair.

3 The modification made to the differential branching ratio
due to including color neutralization of the cc pair.

4 Gauge invariant set of diagrams for ‘g" -+ quarkonfum + g.
Q, k, and P are external four-momenta.

5 Lowest order gluon emission from QQ system. a, B, u', B', b
are color indices and 51, si, 8y» sé are spin states.

6 Tri-gluon insertion in coordinate space. w, X, ¥, Z are
coordiﬂates, a, b, ¢ are color indices, and A, u, v are
polarization indices.

7 QQ bound state where the potential is one-gluon-exchange.

8 Emission of two gluons in the color neutralization of the
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Fig. 9

31

color octet Qa pair. kl and kz are the gluon momenta.
One gluon exchange potential for color octet and color
singlet cases. a, b, ¢, and d are quark wolor indices,

and T" are the generators of SIJc(3).
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Tadble I Table 11

Qtin cen m Qiin Gev) » M
3.0 ° s °
31 2.7 #1078 16 1.3 20"
3.2 2.3 w10 3.7 2.3 = 2072
3.3 7.1 %307 s 2.5 = 1072
34 1.7 w10”?
s 3.4 « 107
3.6 6.5 » 107
IR 1.2 » 2072
3.8 2.6 21072
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CHAPTER 11

F Meson Production in e'e  Annihilation

Abstract

The F meson production rate is calculated on the ¥{(4414)
resonance using non-relativistic multipole expansion techniques.
The results indicate that this production mechanism could

account for all or part of the observed rates.
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1. Introduction

The charm model which successfully describes the properties of
the established Y and D mesons, requires the existence of mesons
having both charm and strangeness. These new particles, called
F mesons, have the quantum numbers of a charmed quark and a
strange antiquark. The culy evidence which supports the presence
of the F meson in e+e_ annihilation has been presented by DASP [1].
Data from Mark II places an upper limit for F-production which is
close to but less thao the positive result of DASP [2]. It is now
important to determine the productiorn levels expected from theoretical
considerations.

As before, we hope to be able to use non-relativistic
approximations ar® a multipole expansion for coupling the gluonic
degrees of freedom to the quark systems. This seems somewhat
risky since strange quarks are involved, which only have a constituent
mass on the order of 500 MeV. However by limiting ourselves to a
kinematic regime only slightly above production threshold, it will
be shown that the non-relativistic approximation 18 in fact
reasonable, and the multipole expansion well behaved.

The process considered is the production of F mesons from a
virtual photon produced in e+e' annihilation. As stated above,
this demands a four quaik fimal statc consisting of charm +
anticharm + strange + antistrange quarks. Figure 1 illustrates
the production process where the incident virtual photon produces
a color singlet cc pair which ultlaately couples to an effectively

local gauge invariant gluon operator, which is the source of the



strange quark content of the final state ¥ mesons. Although the
intermediate gluons are highly virtual andi timelike, due to the
limited phase space available they have a small three-momentium
compopent. This long wavelength probe coupled to the small cc
system naturally lends itself to a multipole expansion. The
expansion parameter is of order (_r-k), where r is the radius
of the intermediate cc system and k is the three-momentum of the
intermediate gluon (which translates into the three-momentum of
the produced final state strange quarks): As will be shown, the
relatively small value of this quantity aftords good justification
for our lowest order calculation.

II. The four-quark production amplitude

The firs: step of the calculation is to evaluate the four-quark
production amplitude of Fig. 1, which must later be projected onto
the desired FF state. The four-quark production amplitude can be
split into two parts for computational ease. We will first focus
exclusively upon the cliarmed quark productfon and its coupling to the
intermediate gluon modes as given by Fig. 2, and later attach
the final state strange quarks. Note that only one time ordering
is relevant for this part of the process since the produced charmed
quarks are very massive and only slightly off shell. This part

of the amplitude is given by

ACY" QO +X) = -deQ (2m8(E, - E;)

- (" —iH o
x< xchc|Jod:HI(:)e théq": > (2.1)
%

[ [
(zm)? (20)3

x < QIQ. [Hp, (@) |"y'™>
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where HI(t) is the operator which couples the charmed quarks to

the intermediate gluon state, which is denoted by X. The evaluation
of the first matrix element in Eq. 2.1 uses the now familiar techniques
for coupling gluons of small three-momentum to heavy non-relativistic
quark bound states [3). To obtain tis complete gauge invariant

local gluon operator (including the non-abelian term that was
neglected for kinematic reasons in Chapter I), it 1s necessary to

sum all the diagrams of Fig. 3. In order to get the explicit form and
normalization of this operator, one must tcmporarily model the
quark-antiquark interaction as being mediated by "color-coulomb"
ladder exchange. Once the zauge invariant operator is obtained,

it can be used to couple external gluons to a quark bound state

whose internal binding mechanism deviates from a simple coulomb-like
potential. (This is shown in the approach by Yan [3], which does

not rely on the form of the Qa potential for the derivation of the
multipole expansion.) The reduction of the matrix element yields

= [ —1Ht| e o 33 _
<xocfzcijoatnl(r)e fole> = (m s (p; - Pi)‘igTb’aEchx;"Kc .

ey 110"
x <chQc]ri 1:l.2 'Qch>
c Ve ¢0 O
—mc + € € Py + ps)

i,0 o,1 o,1
x (3 Ab -3 Ab - gfbacAaAc) 2.2y

where g'{¢) is the interaction potential energy of the cc prir in the

color singlet (octet) state, Ty is the relative separation of the cc

pair, and (p: + E:) is the energy of the emitted gluonic system.
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Note that this is simply the non~abelian analogue of the electric
dipole (E-E) transition familiar from electromagnetism. It is easy
t- show that the magnetic dipole coupling does not contribute to this
order in the non-relativistic expansion.

To calculate the contribution from intermediate cc resonances
we note that the energy denominator that appears in Eq. 2.2 is
exactly (mr ~ Q), where Q is the center of mass energy, and L

28 es

is the mass of the relevant resonauce, 1.e.

plz p|2
£ " e -p2-3° = & Yl e o - -
o, + € €= pg = Pg u, + € €=-p Py + 2mc 2m
2
= (m +e'+-2) - (2m +py+ P, +E)

To complete the evaluation of Eq. 2.2, we note that the expectation
value of T, for the £ = 0 bound state to free quark transition can

be estimated without knowing the exact bound state wavefunction:

2p!
~ rel bound state ~ c 1
1 Vi ¥ [coherence time] [mc ]i " E 2.3
where E = lmres - 2mc[. This relationsi:ily holds exactly for a

coulombic bound state, and is a gond approximation for a harmonic

oscillator potential.
We can now trivially couple the gluon fields of Eq. 2.2

to an ss pair as in Fig. 1 and obtain the amplitude to lowest

order in the three momentim:



- (1eQ Y(igTy) ~(1gT,) =
A"+ QchQst) = : 2ms = . Bs(x;s°1313)(XA:°uxAE)

3a
Bl a-5

4 4
—2 ~emisie - p)
mE @ Pres irreslz’ £ i

(2.4)
where u is the virtual photon's Lorentz index, and the x's are

non~relativistic quark two-spinors. The appearance of the factor

3a
(1 - —ZE) i5 from the sum of the tree diagram of Fig. la and

the one loop diagram of Fig. 1b [4]. This four-quark production
awplitude can now be projected ontn the desired color singlet
final states to determine the FF production amplitude.
I1I. F meson production

To obtain the FF final states from the four-quark production
amplitude of Eq. 2.4, we must do color, spin, and momentum
wavefunction projections, We define vhe center-of-mass momentum
and internal momentum of the F meson to be P = B + Bs and
q agc-§5 , and of the?byfs§c+gs and SEEc'Es . ‘The
momentum wavefunction projection becomes

A["Y" > (QCQS)(QCQS)) = A" > QQQ0,) * ?2—‘1— og(a)

cc B8 1T)3

x 479 =(q)
(2“)3 F

A("y" » Q,Q.2.Q

¢'C 88

) x ¥5(0) x ¥x(0)
(2.5)

where OF(VF) i5 the momentum (spatial) wavefunction of the P meson,
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and all terms linear in q and E integrate to zero due to the £ = 0
nature of the F. The color projection operator to be inserted in

Eq. 2.4 1s simply 6u§6ab /3. The spin projections are equally simple.

Define

s ot +
Ry, 2 Oy 94%5 ) (xy 9N - (2.6a)
s> s eV’

In appendix A, it is shown that for FF production

FF
By = 84y o (2.6b)

for FAF production

.
BT = 4/

o iujei (2.6¢)

with € being the F* polarization vector, and for FAF* production

FAF* A% x
H

A
iy € e Giu + eieu) (2.64)

= Z(Eie

with EA and EA the polarization vectors for the F* and F* respectively.

The projected amplitude becomes
Al > @@ + @ey) =

2 3oy 1., b4
- 2ig chVF(O)Vf(O)Riu(l - P28 (P, - BY)
/2) ‘

3mcmsE(Q g T irre

es 8

2.7
Adding on the (e+é- -+ "y") part of the amplitude, squaring, and

summing over final states yields

a(ff - production) =

3a
e )2 a0 221950 |20 1201 - 2% %0 - mp, - mp ¥R

2 2.2 2 2 4
27"mcmsE [(Q - mres) +7T /4} Q

(2.8)



vhere R is the statistical spin factor, and is equal to (1, 4, 7)
for (FF, F¥F + FF*, FAF*) production. An interesting feature of
this calculation is that the quark binding interaction has not
entered in any complicated way. The binding interaction o:ly entered
through the ¥ meson wavefunction at the origin, which can be
estimated from an experimentally determined equation [5] uasing
only the constituent quark masses.

The production cross section for FF states can now be evaluvated as
a function of energy using Eq. 2.8. We use the DASP values
mp = 2.03 GeV and Dp, = 2.14 GeV for the F meson masses. The
constituent charm and strange quark masses are 1.5 GeV and 0.5 GeV
respectivel) . ising these quark masses one estimates [5]
IWF(O)I2 = 1.1 x 1072 Gev?, and a, is defined at the mass scale
of the bound state to which it is associated. Finally, we can
n_w evaluate the FF production cross sectior contribution from
the parrow (cc) resomance at 4.4l4 GeV, whose measured width is

33 + 10 MeV [6]. We find for all possible F meson spin states

= = +1.4 nb
opplQ = 4.4 GeV) 1.6 mb " ) (2.9

where the limits are from the experimental uncertainty in the
resonance width. This contribution to FF production is very strongly
peaked in erergy and drops to less than 5% of its peak value as

one tunes the einlergy more than 100 MeV off resonance. The spin

state content of this cross section ie in the multiple ratio

FF:F#F + FFR:FAF* = 1:2.2:1.4 (2.10)

The experimental cross sections, after taking estimated branching
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ratios into account are, from DAS™'s inclusive n-production data [1]

- = +1.3 unb
Op7(Q = 4.4 GeV) 5.3mb7,°,

and for Mark II from nm production, the obtained upper limit [2]

opF(Q = 4.4 GeV) < 3nb .

Thus our calculated F meson production mechanism could account
for all or most of the observed rate.
IV. Validity of approximacions

We will discuss, in oider, the validity of the perturbative
multipole expansion, the non-relativistic’ reduction of the
four-component quark spinors, and the neglect of possible perturbative
final state interactions,
A. The perturbative multipole expansion

The multipole expansion parameter is, very crudely as(f'g).

Using Eq. 2.3 for r

aS(E-E) —_— us(r)(k)
~ a Ga)(®

where € 1s the QQ interaction energy (~ LI 2mc), 8 is the

e
relative QQ velocity in the resonance, and P is the final state

three-momentum. Defining o at the scale of the yY~resonance gives

“5(5'5) .15
for FF production at a center of mass energy of 4.4 GeV. Thus,

the multipole expanslon parameter seems under control.



B. Relativistic corrections
The weakest possible link in the use of the non-relativistic

Feynman rules is the reduction of the production vertex of the ss

pair:

- ¢ BB
u(ps)viV(p y — X Uix- + 0[( o ]

2

~ P/2
1+ 2

(2m)

~ 1+ .13) .

This means that there could be relatively large relativistic
corrections to our calculated rates on the order of 25%.
C. Perturbative final state interactions
There exist possible final state interactions as in Fig. 4.
Figure 4a is already implicitly included through the use of the
effective coupling constant in the lowest order diagram. The
color trace of Fig. 4b is down by 1/Nc from the lowest order diagram,
indicating that the expansion parameter here is in fact aE/Nc s
as expected from meson-megon scattering in the 1/r:c expansion [7].
So even for an ug ~ .2 = .4, neglect of these terms seems reasonable.
As we can sce from A, B, and C above, the approximations used
in the calculation of F meson production seem to be under control.
The most important test remaining is an independent reproduction

of the DASP results.



Appendix
A. Spin projections

+ +
R, £ (x_ o.xz)(x, 0 x)
1u lz 1 lz ll u's,

The normalized spin-l vectors are

+
i
{15

e =-3a 10
= F1,0
= 200 .

For FF production
1 2
Riu = [72_] Tr(O‘iO‘u) = Giu .
For F*F production

Riu

For F*F* production

R = Tr(gx-o c

ex-u c )
EAT] <~ ~u

i

A ALY x
2(eieu e"ee Giu 4+ € i)

A
€
1

N | A, = -
7 Tr (Gig guu) i1/ Eiui €

J
S
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Figure Captions

Fig. 1 %" - Q;ECQ;ES diagrams. A is the quark spin index, a

and B are color indices.

Fig. 2 The gluon/(éz) resonance coupling.

Fig. 3 Gauge invariant set of diagrams that gives the local

gluon operator which couples to the cc Tesonance.

Fig. 4 Possible final state corrections to calculated production

mechanism.
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CEAPTER III

Non-perturbative Effects in Heavy Quarkonia

Abstract
The effect of a non-zero vacuum gluon condensate on heavy
quarkonia is discussed. As a function of the quark mass, it
is determined which iow lying levels of the spectrum are
dominated by the perturbative 1/R one gluon ladder exchange

potential.



T
'

I. Introduction

In QCD, due to asyaptotic freedom, it is well known that the
short distance part of the votential is dominated by «ne gluon
exchange, giving rise to & calculable 1/R potential, For the long
distance part of the interaction, various phenomenological potentials
have been postulated that reproduce the observed heavy hadronic
spectrum. Since the bound state quarkonium radius dimensionally
goes like r “’%— » one of the hopes is that for very heavy quarks
the bound state radius will be of a size that only samples the
known short distance part of the potential, allowing unambiguous
theoretical calculations., A crude back-of-the-envelope estimate
of how massive the quarks must be to see only the "color coulomb
interaction” is made by requiring that the coulomb-like binding

energy is much greater than some hadronic energy scale

s |2m
T 295 >1 Gev (3.1)
n

where n is the principal quantum number of the coulomb bound state.
Choosing the strong interaction scale parameter ) to be approximately
500 MeV, and the effective coupling constant to be at the scale
of the bound state Bohr radius yields mQ >25GeV for n = 1.

It is now possible to determine more rigorously which low
lying levels of the heavy gquzrk bound state spectrum are dominantly
coulombic, as a function of the quark mass. The procedure will be
to calculate the non-perturbative power corrections to the i/R
potential for extremely large quark masses where these power

corrections are known to be small, and then determine how small the



quark mac<es can become before the coulomb approximation breaks
down. The method for studying these non-perturbative effects is
due to the pioneering work of Shifman, Vainshtein, and Zakharov [1].
Their technique is to extract the long distance behavior of
internal lines in Feynman diagraus systematically, and parameterize
this dynamical contribution with experimentally determined
quantities (see Appendix A). As applied to a heavy quark-antiquark
bound state, the procedure is to take the lowest order perturbative
diagrams of Fig. 1 for gluon exchange within the QQ bound state and
allow each gluon line to go soft individually. The soft line is
cut, and the cut ends of the long wavelength line are allowed to
propagate into the vacuum yielding the set of diagrams illustrated
by Fig. 2. Note that the complete set of diagrams of Fig. 2 is
exactly the set of diagrams considered by Peskin [2] in determining
the gauge invariant coupling of long wavelength gluons to a color
singlet heavy 66 bound state. These long wavelength gluons which
are coupled to the QQ pair propapate into the vacuum and are
"eaten'" by a gluon non-zero vacuum expectation value. Note that
this procedure is equivalent to allowing the vacuum to have non-zero
values for the gauge fields (as given by the vacuum expectation
values), and then asking how the QE system behaves in the presence
of this “external" field.
II. Non-perturbative corrections to the color singlet potential
One can easily sum the diagrams of Fig. 2 as Peskin has
done [2], using the techniques we reviewed in Chapter I. The

well known result gives the first term in an operator product
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(Fig. 2) = %<0Iri§8—ler"'|o><o|gZG:°ci°(o)|o>

+

1K1

1 i 1 2 k1l _mn € €

o <elolz25 o> <olg’ ™0 > - &
2 mQ 8 1

(3.2)

where L is the da separation in the bound state ¢, Hl(Hs) is the
Hamiltonian of the da in a color singlet (octet) state, [ is the
Pauli spin matrix, and the gluon field strength, G:v, is evaluated
at the origin of the bound state. It should be obvious where
the terms in Eq. 3.2 come from. The first term corresponds to the
¢ state coupling to the gluon field via an electric dipole
interaction, propagating in a color octet state, and then going
back to a color singlet ¢ state via a second electric dipole
interaction. The gluon fields which are coupled to the QQ state
are "eaten" by the vacuum, 1.e. they're color electric fields
which persist independently in the vacuum. The second term in
Eq. 3.2 is similar to the first except that the multipole coupling
is a magnetic dipole, and the vacuum field is a color magnetic field.
The energy denominator of Eq. 3.2 can be further simplified

£
Brr * BY

and B: = %sijkcjk, and choosing ¢ to be a spin

by noting that for one gluon exchange H8 - l-l1 =
i_ Lol
defining Ea = Ga

zero state, the expression simplilies to
3
(F1g. 2) = SR8 <g)g%gp%j0 >
s

(3.3)

+ <39 r,2'0> <0|52§a.§a| > .

9ust

jmm

55


http://expansi.cn

Shifman et. al. have determined the vacuum expectation value of the

square of the gluon field strength tensor from remarkablv successful

charmonium sum rules [3]. They find

2
E— <ole® 6" o>
uv a

4 4
M & (330 MeV)
4"2 o

which implies (see Appendix A)

2 2
E <oz B%o> = - E <ol 0> = u:‘
T T

We can now rewrite Eq. 3.3 as

(Fig. 2) = hE +uMf

with

3
WF s Zellle> "2"2

27a
s

s <¢|r|e > ‘ITZH::

9a m

8°Q

To determine how this long wavelength "vacuum gluon condensate"
affects the bound state Hamiltonian, we will calculate the bound

state propagator of the QQ system as illustrated by Fig, 3.

T { t
(Fig. 3) = lim f ae o il - et il + f idtlhE + ...

T+

0

t
x 1+Iid:1hx+...

0

(3.4)

(3.5)

(3.6a)

(3.6b)

3.7)

with € the color singlet bound state energy. Using the identity

1



t t t n

1 -
f 14,4 ] id:zA...I "lgge s = 154 (3.8)
[} 0 0

We can exponentiate the contributions of hE and hH to find the

corrections to the color singlet Hamiltonian

2.4
4o {ﬂ M
s=0 s=0 _ _ s ]
MRS A o <¢lr|e >
{ 26"
(3.9a)
ﬂZMa 3
+ 2| < o|x’|e >
27a
s
for the spin zero bound state., Going back to Eq. 3.2, we can do
similar manipulations for the spin one bound state, yielding
2.4
4o [ N
a=1 s=l _ _ 8 _ | o "
H~ — H) - 5| <elzle >
27a_m
sQ
(3.3b)
HZM: 3
+ L”“s <glrtle> .

Note that the second terms in Eqs. 3.9 which result from the magnetic
dipole coupling give a "hyperfine" splitting between the s = 0 and
s = 1 states.

Equations 3.9a and 3.9b give the leading non-perturbative
corrections to the one gluon exchange color coulomb potential. It
bears repeating that these expressions are only valid as long as
the non-perturbative corrections are small compared to the color

coulomb interaction energy, i.e. for sufficiently large mQ (small r).
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III. Results

We are oow in a position to determine when the coulombic
approximation is a valid ome for a given quark mass, and a specified
energy level. First note that the "magnetic" term proportional to
< ¢|z|¢ > 1s always much less than the “electric" term proportional
to < 0|r3|@ >, for a, <1, Thus, to determine when the coulomb
approximation is valid, we can define the ratio
ﬂ2M4

3
_ZTQ-:_]< 0|r |@ >

(3.10)

4us

<@§r—¢>

which is the ratio of the energy of the non-perturbative power
corrections tc the color coulomb binding emergy. If R <X 1, the
state ¢ can be well described by a coulombic wavefun:tion. In
Fig. 4 we plot R as a function of quark mass for the n = 1, 2, 3
levels of the coulomb spectrum. The coupling constant in the
expression for R is normalized to be o, = .3 for m, = 1.5 Gev¥,

as determined from potential model fits to charmonium [4), and

its scale is the bound state Bohr radius, which goes as (ast}-l.
If, for example, we decided that R < .2 implies a reasonable color
coulomb dominance, the 1la level would be coulombic for mQ »# 10 Gev,
the 2p levels for m, # 50 GeV, the 2s level for L 2 60 GeV, etc.

Q
Note that the results are roughly consistent with the crude estimate

of Eq. 3.1.
Thus wz see that one gluon exchange dominance occurs for

quark masses substantially l.cger than present energies. This is
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as expected from the simple estimate of Eq. 3.1, but our new estimates
are much more quantitative with a firm theoretical foundation.

IV, Estimate of accuracy of predictiuns

Two points much be addressed., The first is a guess ¢f the size
of the contribution from possible higher dimensional operators in
the operator product expansion. Secondly, we must determine how
the certainty in the experimentally determined quantity, Ho’
affects our results. !

A. Higher dimensional operators

Dimensionally, we expect higher order operators such as
DuG:uDvG:u' fach:vctoGsu, etc. to contribute to Eq. 3.2. These
should also have non-zero vacuum expectation values since rhey
are Lorentz and color invariants. It 1s conjectured that the vacuum
expectation values of these higher dimen. ional operators merely occur
with appropriate higher powers of F%, t 2 scale of the vacuum
fluctuatio~-. Then, higher dimensional operators cortribute in
an expane 1 of (Moao), where a, is the bound state Bohr radius and
originat . 1in the dipole type coupling. This effective expansion
parame.er is on the order of .15 for mQ ~ 20 G=V, and decreases as
1/mQ. Thus the neglect of higher dimensional operators seems quite
reasonable.

B. Uncertainty in Mo

Shifman et. al. estimate that (Mo)6 is known to within a

factor of two from their sum rules. Shifting the normalization

of our curves for R in Fig. 4 by a factor of two induced an

uncertainty in our determination of mQ cf roughly #*25%.



Therefore, we see that the calculation ie relatively clean,
with ke experimentally required parameters known to an acceptable
accuracy. Since the calculated quark masses where the color coulomb
potential dominates are above presently accessible energies, our
phenomenological inferences are limited. However, if the top
quark and toponium are found, our result- 1 us that since o,
must be greater than 10 GeV, we expect the wave function at the origin
for the lowest lying state to be given by the coulomb wavefunction.

This prediction can be checked by measuring the (tD) branching

ratio to charged leptons.
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Appendix
A. Non-perturbative techniques of Shifman, Vainshtein, and
Zakharov [1]
1. Introduction

Asymptotic freedom allows QCD calculations to be done at short
distances since the effective ~supling constant of tiie theory
becomes small, insuring a sensible perturbative expansion. However,
a complete theory must also include large-distance dynamics' as well.
What 1is needed in QCD is a quantitative framework in which to
calculate large-distance phenomena. This is the subject of the work
- £ Shifman, Vainzhtein, and Zakharov that will now be reviewed.

The central objects studied are the power term corrections to
the slowly varying logarithmic terms of perturbative QCD. These
povwer terms are due to non~perturbative effects which limit asymptotic
freedom calculations as one tries to extend the short-distance
approach to larger distances. Phenomenologically, the power
corrections are introduced ria non-zero vacuum expectation values

(VEV) of gavge Invariant field operators such as

. a .a -
\o|cwcwlo> # 0 and <0|qg|0> # 0

where q is the quark field and sz 1s the gluon field strength
tensor. They would vanish by definition in perturbation theory.

By giving these operators non-zero VEV's we will sne how they induce
power corrections to ~aort distance phenomena.

2. Gross features of procedure

Consider a gluon line within a Feynman diagram. (Any type of
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line within the diagram would be treated analogously). However,
assume the line to be the exact glucn Green function

gw(kz). Splitting @W(kz) into two parts ylelds

@ o = Eéﬂ + [ D, —E‘zﬂ]
where we work in Feynman gauge for definiteness. As kz + @,
SEuv(kz) is given by the first term due to asymptotic freedom.
We assume the bracketed term falls off as some power of kz as
k2 + o, To get the complete snswer for the Feynman diagraw of
interest, va must include both terms in the kz-integration. The
first term is absorbed in tbe standard perturbative treatment, but
the second term gives something new. Since SZLv(kZ) - guv/kz]
18 presumably large only for small kz, we can expand this additional
contribution to the amplitude in k2 and approximate k2 = 0. In the
expansion, we ﬁust be caveful to extract the gluon field strength
tensor, GﬁvG:v’ s0 as not to violate gauge invariance.

Doing the kz-integration results in a number which is sensitive
to the gluon dynamics at large distances. If we had a complete theory
of confinement, this could be evaluated. In the absence of this, a
new parameter 1s introduced which is equivalent to the vacuum
expectation value < OIG:vG:vIO > . This procedure allows us to
study non-perturbative effects in simple Feynman diagrams. Note that
this i8 only feasible if all the lines except one are far off-shell
and thus known.

3. Example calculation

Consider the T-product of two currents for large external



three-momentum q. For this kinematic regime, it is clear that the
operator product expansion [5] is valid. Restricting ourselves to
the current ju = Eyuq in the imaginary world of one quark flavor, and

assuming conventional SU(3) color’ it is an easy exercise to find
4 igx } = _ a2
i[d xe Tl 1,(03,(0) (a9, - a'g,)

oy, 2 2m
x ——-l--i [1 +-ﬂ£] 1n%+—,}(qq)
an I Q

e, a g 2'lrc1s _ a .« o~ a

+ G - == (qv v _t a)(qy Y t7q)
121IQ4 uv pv QG a's a's
4

8 — .a.,,~ .q
== (vt a)(qy t7) + ...
906 a [«3

(A.1)
where Qz = - qz. For simplicity, we rewrite this expression as
faxp (g @) = @, - e [or+ o
H v uv T S M
a na fra
+ cGGu\JGuv + Cr‘l'l"l"l’l"l' + ...] .

(A.2)
When one takes the vacuum expectation values of Eq. A.2, one obtains
the photon polarization operator that is used in calculating the
rate of e+e- going to this particular quark flavor. Note that with
the standard perturbative vacuuw, only the unit operatuor would

contribute as all others vanish, but by postulating < 0];‘&“0 ># 0,
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<M§fbm>*0.nm,mneueuﬂumﬂcmuﬂmMMto
the polarization tensor.
Defining
2. _ 2 2
HW(Q ) (quqv -q Bw)l(Q )s (A.3)

we can take the vacuum expectation value of Eq. A.l to get

a 2 _
wd = -4 [1 +ﬂ—°] m L+ 2 <olnqql0 >
4n W Q 4
(A.4)
1 a .a 1
>+ o= .
+ e <o|uscwcw|o °[Qs)

where only the first few terms are written. Note that this expression
is calculable in QCD for Q larger than the scale of the vacuum
expectation values.

We also have the general dispersion relation

e = L J In n(s)ds a5

8 + Q2

2

where Im 7(s) is proportional to the measurable cross section for

e+e_ annihilation into hadrons with this particular quark flavor
content. Equating Eq. A.4 and Eq. A.5 gives a sum rule relating the
QCP vacuum cxpectation values to the integrated experimentally
determined e+e- hadronic cross section. This is the basic result

of Ref. 1. A further technical point is that the information
available from this sum rule can be optimized by doing a Borel
transformation of both expressions for the polarization operator.

Using these techniques, Shifman et. al. [3] determine from

64



65

e'e” — charm data

a
< 8.4 A& 4
o|—<;,r quuv|0> = (330 MeV) W . (A.6)

Using different processes, all of the vacuum expectation valuzs can
be "measured" in principle, and used to make theoretical predictions
for other processes.
4. The §e and §a vacuum filelds

Equation A.6 cin be rewritten in terms of Ea and Ea fields.
This is useful because the two fields have markedly different
effects on a heavy qusrk system. (The El and Ml couplings have
quite different effective strengths). Demanding that |§al2 and
I§a|2 have independent Lorentz invariant wvalues puts a restriction on

their relative magnitudes. Under a boost with velocity g [6]

- - - - y+1 b
(A.7)
a a a 2 a
¥ — y{x_s -(SxE)]-"_J,_"TB(f}-B) .
To have |Ea|2 and |1_ie|2 invariant, E = # 18 . This means
I§a|2 = -|§a]z . (Note that this is consistent with the fact

that even though < Gz>b # 0, we want the vacuum energy density

to equal zero.,) Using this requirement with Eq. A.6 gives

2 2
j55<0|1;a-\'s“|0> = -35<0|§“-§a§0> = (330 Mew)? |
m n

(A.8)
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Fig. 2

Fig. 3

Fig. 4

Figure Captions
Lowest order perturbative diagrams for gluon exchange
within a QE bound state.
Sum of diagrams generated by cutting the soft gluon lines
of Fig. 1.

\'t gluon cond te contribution to the Qa propagator.

The quantity R, as defined in Eq. 3.10, as a function of

m. for the n = 1, 2, 3 levels of the coulomb spectrum.
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CHAPTER IV

Non~perturbative Calculation of the Heavy Quark Potential

Abstract

Non-perturbative contributions are incorporated imto the
heavy quark potential via non-zero vacuum expectation values
of gauge invariant operators 3 la Shifman, Vainshtein, and
Zakharov. The derived potential exhibits the appropriate
short distance 1/r behavior and the asymptotic linear confining
potential., The galculated coefficient of the linear term
is in striking agreement with phenomenological potentials
that are constructed to reproduce the heavy quarkonia spectra,

and gives the proper Regge slope.
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I. Introduction

The QQ color singlet potential will be calculated by including
two contributions —— the one gluon exchange potential and the
induced potential from a non-zero vacuum expectation value of the
operator ngEvGuva. Intuitively speaking, the problem of including
the effects of this non-perturbative vacuum gluon condensate is
equivalent to solving the process under consideration in constant
uniform color electric and magnetic fields. Of course, the
contributions of higher dimensional and possibly non~uniform
vacuum fields must also be considered, and either included or shown
to be negligible for the relevant process. The effect of this
gluon condensate on the quark—antiquark potential can be evaluated
quite simply using multipole techniques. The justification for this
procedure is that as long as the size of the vacuum gluon fluctuations
is larger than the size of the da system, the expansion parameter
(k-r) is a small number, Since the vacuum condensate is effectively
spatially homogeneous, a lowest order multipole expansion can be used
out to relatively large distances. Of course, higher multipoles
which couple to gradients of the vacuum fields could contribute
when deviations from the homogeneous approximation are incorporated.
However, as will be pointed out, these are unimportant out to a
distz.ce of roughly a fermi.

The reason that this calculation is valid out to distances
where the non-perturbative effects dominate while the results of
Chapter III are only valid when non-perturbative effects are small,

is that here we will sum the non-perturbative contributions to all



orders via a non-linear equatiocn. We can then estimate the size of the
neglected contributions, and will show that these are negligible out
to quite large distances.

II. Calculation of Hl as a function of BB

The derivation begins by allowing a static QQ pair which is
in a color singlet state and interacting via a one gluon exchange
potential to couple an arbitrary number of times to a vacuum
field, as in Fig. 1. (The atatic mQ + o condition will be relaxed
in Sec. VI, allowing spin coupling terms.) As is known from
the one gluon exchange potential, the intermediate color octet
QQ states are in a repulsive channel, and thus tighly virtual
with respect to the color singlet incident stute (see Chapter I,
Appendix B). Thus, the vacuum couplings clump into short periods
of octet propagation, separated by longer periods of color singlet
propagation [1]., Furthermore, the vacuum only contains the coloer
singlet corbination GEVGUVE and pairs of gluon indices must be
contracted. Figure 2 results fraom this reduction of Fig. 1.

The two particle irreducible interaction kernel which
describes the vacuum contribution to the color singlet propagation
is chosen to be of the form given by Fig. 3a. One should notice
at this point thé: the form of the 2PI interactior kernel has
been restricted by the choice of Fig. 3a, The rest.oiction is
that the vacuum couples to the QE pait in a nested series of
"rainbow" diagrams. This is a feature of the calculation that is
necessary for computational reasons, since the combinatoric problems

associated with non-rainbow diagrame appear to be insurmountable.
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This approximation is not without justification however, since the
non- rainbow dfagrams are non-planar, and suppressed by 1/Nc to
each order in the non-planarity. This is a general result for
diagram topologies [2], and easily verified to lowest order for
this process.

Another important feature to notice about the 2PI interaction
kernel of Fig, 3 is that the color octet Hamiltonian, Hé, that
appears is not a complete physical Hamiltonian. It contains the
one gluon exchange diagrams and coupling to the vacuum fields with
the restriction that the da pair remains in a color octet state
at all times, with no intermediate color singlet states. This is
an obvious requiremenﬁ as can be seen by reexamining Fig. 2 and
racalling that the color singlet states tend to propagate for
long time periods. This singlet propagation would destroy the
localization in time necessary to couple to the vacuum field, which
1s bilinear at a space-time point. Simflarly, Fig. 3b describes
the vacuum contribution to the color octet state propagation,
with the same restriction to color octet intermediate states.

When iterated, these 2PI kernels can be used to solve for
the full color singlet Hamiltonmian which includes one gluon
exchange and the vacuum condensate contributions. Figure 3a

glves

-it(Hy - 1)
(Fig. 3a) "(—iHI) dr e (-iHI)dt
0

(4.1)

I v oywOy I
(13 - H)
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where HI is the gluon-quarkonium interaction Hamiltonian, Hé is

the complete (but non-ptysical, as discussed)} color octet Hamiltonian,

o
1

the definition

and H, is the one gluon exchange color singlet Hamiitonian. Making

(Fig. 3a) = mf a ,

we can iterate Fig. 3a to find the full color singlet propagator

T ) - 10t T - 1o
lim dt e = 1lim dt e
T » 0 T+ o 0
t E
x 11 + J ide.h” + ...
171
0
T -18] - hf - de)t
= 1lim dt e
T+ o 0
This gives
= o E
H = H - hy
(4.2)
4a
= 8 _ 1
T HI u' - u° HI .
8 1

To solve Eq. 4.2 for Hl one must know the form of HI, the
gluon-quarkonium coupling. As stated before, the coupling of the
uniform vacuum field tc the QQ pair suggests a lowest order multipole

interaction. The form of this interaction has been derived by



several authors [3], and is given by

= ]
-CI = ;2 [- ,A,(0,£) +d +E (0,t) +p B (0,t) + ] (4.3)
where
Q =g|akrF Ty
a o'a
d = g f d3r ¥y T ¥ (4.4)
~a = "To'a
{3 1 =
m = 8 J d’r 7 (r x V!Taw)

with ¥ the Qa'wavefunction, r the QE separation, and Ta the
generators of SUE(3). Using this interaction in the static quark

(mQ + @) limit, Eq. 4.2 becomes

4a

I T i 2.2
By = - - T ey SOlETE 0> . (4.5)
S}
8 3r

To complete the calculation, we must calculate Hé.

I1I. Calculation of Hé

The determination of Hé follows exactly the same procedure
as that of Hl. except using the iteration of the 2PI kernel given
by Fig. 3b rather than Fig. 3a. However, there is one subtle point
that may be missed by just forging ahead with the naive manipulations.
That point is the elimination of a potential infra-red problem
in the determination of H). This can be seen by looking at the

8

lowest order graph contained in the 2PI kernel for H;, as given
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by Fig. 4. ¥For the gluon momentum going tc zero (homogeneous
field approximation), the energy denominator for the gluon-da vertex
develops a zero, since the energy of the systém has not been changed
by the interaction., However, this singularity is eliminated by
including the full (but nor -physical) color sctet Hamiltonlan for
the QQ propagator inside the rainbow diagram as in Fig. 3b. That
this is in fact the correct procedure can be seen by looking at the
lowest order iterations of the 2PT kernel of Fig. 3b in the
calculation of the Hamiltonian, Hé. This is given by Fig. 5.
Here, of course, we have a non-zero energy denominator across each
vertex. Including potentially infra-red singular diagrams such as
Fig. 6 would be overcounting, since this diagram is already a part
of the expansion of Fig. 5.

Now, H! can be determined in exactly the same fashion as Hl'

8
Analogous to Eq. 4.2, we find

Pl = W -n —L g 4.6)

where Hg is the one gluon exchange potential in the color octet

state. Using the form of HI given 1n Eq. 4.3 and Eq. 4.4, and the

foru of Hg derived in Appendix B of Chapter I we find

[
v 2 % 5 2 1 2.2
Hg r 288 T @ - Tg <olg §a|0>- 4.7
8 6r

IV. Solution for H,

Equation 4.7 can be used to solve for Hé algebraically in terms

of known quantities and variables, and then substituted into Eq. 4.5



to find the final expression for the color singlet potential. Using

Eq. 3.5 of Chapter III for the vacuum expecticn value of §:. we find

4ms ﬂznztz
H = -F*-_T-_;——MZ_ . (4.8)
18 [F +yz3g ™ or]

This is the primary result of this work. The interesting

features of this derived potential are that it has the expected
. 4o
coulomb-1ike behavior ~ - 3—: at short distances, and a linearly

rising potential for large r,

2ﬂM2
o

2
—_— ., =02 /s
H1 r large 3 5

r . 4.9)
Numerically, the long distance potential is

2
—_— s R . (4.10)
Hl + Tatse (.144 GeV”) r

It is interesting to compare the coefficient of the linearly rising
term with phenomenological potentials that have been fit to the
heavy quarkonia data. Fitting the upsilon gprectrum to a coulomb plus

logarithmic plus linear potential [4] gives

exp _ 2
Hl - large_> (.155 GeV) r . (4.11)

If one demands that the phenomenological potential reproduces a

Regge slope of .9 Gev-z, one finds
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exp r
1 r large 2710

There 1s spectacular agreement between our derived potential and
these phenomenological potentials inferred from the data. Our
pctential however, has an analytic interpolating form between the

previously conjectured long distance linear confining potential

and the short distance coulomb-like potential. Detailed calculations

of the quarkonium spectra using the potential of Eq. 4.8 are

fortbcoming.

V. Spin coupling terms

There also exist terms which couple the vacuum magnetic field
g*B

to the guark spins. Since the magnetic dipole coupling [~ Eﬁ_}
Q

is smaller than the electric dipole coupling (~ r°E) for

large m,, we will treat the magnetic terms as a perturbation in 1/mQ.

Q
Doing the same manip:lations as in Sec. II, but including the
magnetic dipole couplings along with the electric dipole

couplings leads to a modified Eq. 4.2

4a
L = -—°2 HE 1 HE _ HH 1 HM .
1 3r I H - ®° I I " - H° I
8 1 8 1

Ucing Eq. 4.3 for the specific form of H? and H?, and also

carefully taking into accout the d6 spin structure since H? is

; (143 cevH)r . (4.12)
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spin dependent, we find

4a
e % 1 2 1 2.2
B 3r 18 T 4a <olg §a|° >
H + o2
8 " 3r
1
1-<68(s 4+ 1)]_
1 J 3 2.2
) 6m2 lms <0ls Ealo g
I3 a2l
Q [“s 3 }

(4.13)

where s is the total spin of the QE pair, Since the spin dependent

terms are only included to lowest order in l/mQ, H
as before by only including electric dipole vacuum couplings.

Using the solution of Eq. 4.7 fc¢- Hé as before, we £ind that H

with the inclusion of spin dependent terms b

4as wzﬂirz

1 T3 3a
8 f 5 1[2
18[21‘ + 788 " or]

w2 [1 G +1)]

3a
2{"s ’ 5
6mQ (_21' + 388 wﬂir]

This "color hyperfine' interaciion can be used to calculate spin
splittings within the heavy quarkonia spectra, for example the
4!(351) - nc(lso) mass difference, To do this requires solving

for the wavefunction * ing the unperturbed potential of Eq. 4.8,

* is calculated

1

and then calculating the energy difference using the additional

hyperfine term of Eq. 4.14. This calculation awalts our

(4.14)
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previously mentioned forthcoming numerical work. However, it is of

interest to very crudely estimate the o ~ n, mass gpliteing using

th: Ry yperfine’

Just for definiteness, let us assume that this expectation value is

dominated by the short distance part of the wavefunction. Then

2ﬂ2M4
m, - ~ <r> .
e 27a_m
s ¢

Using values of <r > = 1.2 f, a, = .41, and m, = 1.6 GeV from
Ref. 5 for the standard charmonium potential of coulomb plus

linear terms yields

m -~ m &~ 50 MeV .
1 e

This should only be interpreted as the correct order of magnitude,
due to the gross nature of the approximations. A critical test
awaits the detalled pumerical calculations of the charmonium
wavefunction using the potential of Eq. 4.8. However, the

preliminary results ere very encouraging.
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V. Validity of approximations
Two poiants must be investigated. First of all, the validity

of the neglect of higher order multipole terms must be evaluated. The
next higher order term that contributes in the expansion of
Eq. 4.3 and Eq. 4.4 will be estimated. Secondly, the neglect ~f
other higher dimensional cperators that contain higher powers of
the quantum fields will be analyzed, i.e. operators that are
tri-linear in the gluon field stremgth temsor, etc.
A. Neglect of higher multipoles

The work of Yan [3]} can be expanded to higher order quite
simply, ylelding for the form of the gluon-heavy quark interaction
Lagranglan

= 1 :
L = E[- QaAoa(O’t) + 42t B (0.0 + o7 D) 4, (0,8)

1 2
+ 37 DA, B (0,0) + ...

+ {(magnetic terms) + ... ]

where the definitions are as in Eq. 4.4. The next order term,
%?(g-g)ga-ga, does not contribute when summed over quark and
antiquark, and the first non-leading term is %T(§'Y)Zga'§a' A
very crude estimate of this term can be made by assuming
(5'2)2 - C%)Zkz, where k is the gluon energy. This energy is
assumed to te on the scale of the fluctuations of the vacuum

condensate, Ho. Therefore, we expect
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2

%(E'Y)ZQ,'E, — ;—,(—%Mo) x (lowest order).

This means the corrected amplitude has the form

2
1+ 4ill£——f x (lowest order) .
(fermi)

The corre;tion is less than 12% out to a distance of a fermi. Since
the bulk of the wavefunction exists within this range, these
corrections are expected to be quite small.
B. Neglect of other higher dimensional operators

The next higher dimensional operator that is Lorentz and
gauge invariant, ard could have a non-zero vacuum expectation value
is

e < olczvcgucﬁulo >+ 0
It might be expected to contribute with only one higher power of
(r-k) than lowest order. Note that this is only true for three
color elec:rié dipole couplings. However, the form of this .utrix
element demandé that at least one of the fields be a color magnetic
field, and thus be down by a power of 1/mQ. Therefore, ia the
static quark approximation the next contributiﬁg operator will
be quartic in the gluon fields. Dimensionally it is expected to
contribute with roughly the same stremgth as the term in Sectin: A,

since it alsc is suppressed by two powers of the effective expansion

parameter.



while originally it may have appeared that our derived potential's
spectacular agreement with the phenomenologically motivated potentials
was fortuitous, it now appears that the approximations made were in
fact very reasonable. The vacuum fields are quite homogeneous, and
thus appear effectively uniform out to relatively large distances.
The case of uniform fields can be handled quite accurately, giving

us very trustworthy results.
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Figure Captions
1  Quark-antiquark pair interacting via one gluon excharge,
and coupling to the vacuum gluon condensate.
2  Clustering of the quarkonium-vacuum field interactions
about regions of color octet propagation.
3 (a) 2PI kermel describing the vacuum contribution to the
color singlet da propagator.
(b) 2PI kernel describing the vacuum contribution to the
color octet da propagator.
4  The lowest order term of the color octet 2PI kernel.
5 Iteration of the 2PI kernel to generate the da propagator.
6 A potential infra-red singular term in the iteraticu of the

2PI kernel to generate the da propagator.
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Summary

It has been seen that there exist several physically
measurable processes that can be reliably calculated using
multipole techniques within the framework of heavy quarks and QCD.
This is extremely important because of the acarcity of quantitative
confrontations between experiment and the conjectured theory.
These techniques can be applied to kinematic regimes that are
complimentary to standard perturbative calcuIations, and 1in fact
can be extended into the realm of non-perturbative physics as we
saw in Chapters III and IV. The multipole expansion is ideally
suited to investigate some manifestations of the long distance
infra-red structure of QCD that may ultimately be connected with
confinement.

There are several immediate extensions of the work contained
in this thesis that could be very useful. The first extension is
the numerical calculation of heavy quarkonia spectra using the
derived potential of Chapter IV. This will allow immediate
confrontation between experiment and theory through comparison to
existing p and T data Secondly, relativistic corrections to the
derived potential can be incorporated through a Bethe-Salpeter
formalism. This is useful since the § system is believed to have
important relativistic corrections, and it would also allow the
determination of spin-orbit couplings which could be compared

to existing x-state splittings in the charmonium systems.



