23,497 research outputs found

    On the modeling of low-Reynolds-number turbulence

    Get PDF
    A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations

    Young\u27s modulus of [111] germanium nanowires

    Get PDF
    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior

    Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions

    Full text link
    We propose the enhancement of Λc\Lambda_c yield in heavy ion collisions at RHIC and LHC as a novel signal for the existence of diquarks in the strongly coupled quark-gluon plasma produced in these collisions as well as in the Λc\Lambda_c. Assuming that stable bound diquarks can exist in the quark-gluon plasma, we argue that the yield of Λc\Lambda_c would be increased by two-body collisions between udud diquarks and cc quarks, in addition to normal three-body collisions among uu, dd and cc quarks. A quantitative study of this effect based on the coalescence model shows that including the contribution of diquarks to Λc\Lambda_c production indeed leads to a substantial enhancement of the Λc/D\Lambda_c/D ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects

    Full text link
    We present a general relativistic description of galaxy clustering in a FLRW universe. The observed redshift and position of galaxies are affected by the matter fluctuations and the gravity waves between the source galaxies and the observer, and the volume element constructed by using the observables differs from the physical volume occupied by the observed galaxies. Therefore, the observed galaxy fluctuation field contains additional contributions arising from the distortion in observable quantities and these include tensor contributions as well as numerous scalar contributions. We generalize the linear bias approximation to relate the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. Our full formalism is essential for the consistency of theoretical predictions. As our first application, we compute the angular auto correlation of large-scale structure and its cross correlation with CMB temperature anisotropies. We comment on the possibility of detecting primordial gravity waves using galaxy clustering and discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review

    Electroweak phase transition in a nonminimal supersymmetric model

    Full text link
    The Higgs potential of the minimal nonminimal supersymmetric standard model (MNMSSM) is investigated within the context of electroweak phase transition. We investigate the allowed parameter space yielding correct electroweak phase transitoin employing a high temperature approximation. We devote to phenomenological consequences for the Higgs sector of the MNMSSM for electron-positron colliders. It is observed that a future e+e−e^+ e^- linear collider with s=1000\sqrt{s} = 1000 GeV will be able to test the model with regard to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure

    Control of carbon nanotube morphology by change of applied bias field during growth

    Get PDF
    Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy

    A Multi-level Algorithm for Quantum-impurity Models

    Full text link
    A continuous-time path integral Quantum Monte Carlo method using the directed-loop algorithm is developed to simulate the Anderson single-impurity model in the occupation number basis. Although the method suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization errors. Further, many observables including the impurity susceptibility and a variety of fermionic observables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called the multi-level algorithm, to solve the sign problem. We find that the multi-level algorithm is able to generate an exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be easily generalized to other multi-impurity problems.Comment: 9 pages, 8 figure
    • …
    corecore