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Notation

English Letters

k = 5(uZ + v2 + w?)

foe]
o
1l

u, R/v

o
1}

U,D/v

model constants, specified in Table 1.

model constants introduced by wall
correction, specified in Table 1.

model constant associated with v,
specified in Table 1.

model constant associated with diffusion
model, specified in Table 1.

model constants associated with
e-equation, specified in Table 1.

pipe diameter
damping functions, specified in Table 1.
grid spacing

index denoting two—dimensional or
axisymmetric flows.

turbulent kinetic energy

fluctuating pressure

radial coordinate

pipe radius

turbulent Reynolds number

pipe Reynolds number

fluctuating velocity along x-direction
friction velocity

mean velocity along x-direction

mean velocity at pipe center
fluctuating velocity along r—-direction
fluctuating velocity along #-direction
mean velocity along é-direction

axial coordinate

normalized r-coordinate

v



Greek Letters

a = 1/«
B

x5, By ¥y

log—law slope

constant in law-of-the-wall

model constants associated with

redistribution model,

Table 1.

dissipation rate of k

specified in

circumferential coordinate

von Karman constant

fluid kinematic viscosity

turbulent diffusivity .

fluid density

model constant associated with
e—equation, specified in Table 1.

angular velocity

vi

normalized dependent variables



Abstract

A full Reynolds—-stress closure that is capable of describing
the flow all the way to the wall has been formulated for
turbulent flow through circular pipes. Since viscosity does not
appear explicitly in the pressure redistribution terms,
conventional high—-Reynolds—-number models for these terms are
found to be applicable. However, the models for turbulent
diffusion and viscous dissipation have to be modified to account
for viscous diffusion near a wall. Thus modified, viscous
dissipation in the flow is no longer isotropic as postulated by
Kolmogorov for high-Reynolds—-number turbulence. Two
redistribution and two diffusion models are investigated for
their effects on the model calculations. Wall correction to
pressure redistribution modelling is also examined. Diffusion
effects on calculated turbulent properties are further
investigated by simplifying the transport equations to algebraic
equations for the Reynolds stresses. Two approximations are
explored. These are the equilibrium and non-equilibrium
turbulence assumptions. Finally, the two-equation closure is
also used to calculate the flow in question and the results
compared with all the other model calculations.

Fully~-developed pipe flows at two moderate Reynolds numbers
are used to validate these model calculations. They are chosen
because detailed turbulence measurements near the wall are
available. The calculations show that all closure models give
good agreement with measurements of mean velocity, shear stress,

turbulent kinetic energy and dissipation rate near a wall.
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However, the slope of the logarithmic law-of-the-wall recovered
from these calculations varies'from one closure model to another.
Some closure model predicts the correct behavior of the log-law
constant as a function of Reynolds number, while others provide
the wrong trend. Wall correction is found to have little effect
on the model calculations. Mean-—-strain effects on redistribution
modelling are found to give rise to an adverse influence on the
calculated log—law, in the case of non—equilibrium algebraic
stress closure. All closure models examined fail to predict the
steep rise of turbulence intensities near a wall correctly.

Also, they fail to reproduce the isotropic behaviour of the
normal stresses at the pipe center. Overall, the best model
prediction is given by the full Reynolds-stress closure
incorporating a non-isotropic gradient diffusion model and the

Launder et al. (1975) model for pressure redistribution.
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1. Introductioq

1.1 Motivation

The flow inside a practical combustor, such as gas turbine
or solid fuel ramjet combustor, is usually very complicated,
especially at the combustor wall. Besides geometry effects,
cooling and dilution air through the combustor wall, fuel
sublimation from the solid fuel grain and rotation of the
combustor further complicate the wall boundary-layer flow.
Conventional modelling of combustor flow is to assume high-
Reynolds number turbulence, since the flow Reynolds number is
narmally very high inside the combustor. The wall boundary
conditions are satisfied indirectly by specifying some empirical
functions, such as the logarithmic law-of-the~-wall for mean
velocity and equilibrium turbulence for the turbulence field, to
link the conditions at the wall to the first calculation point
away from the wall. Consequently, the effects of viscosity and
conductivity near the combustor wall cannot be resolved correctly
and hence their influence on the flow outside the near wall
region cannot be assessed. Therefore, this presents a difficult
problem for the calculation of flow inside practical combustor
because the complicated boundary conditions render the simple
law—of-the-wall and equilibrium turbulence assumptions near the
wall invalid. It is clear that conventional high-Reynolds—number
turbulent closure models need to be modified to account for
viscosity and conductivity effects near a wall before they can be
applied with confidence to calculate the flow inside practical

combustors.



Some work along this direction has been carried out by

previous researchers (e.g. Jones and Launder 1972b; Hanjalic and
Launder 1976; Chien 1980). These studies will be reviewed in the
next section and further improvements will be identified.

Therefore, based on this review, the objectives of the present

study are formulated in Section 1.3.

1.2 Brief Discussion of Previous Work

Reynolds~stress closure* of turbulence applied to turbulent

flow calculations was first examined by Hanjalic and Launder

r~

(1972). In their model, certain assumptions concerning the

structure parameters, u;u;/k, {i not summed), where u, is the ith
component of the fluctuating velocily and 2k = :?Gl {summation
over i) is the turbulent kinetic energy, were invoked to simplify
the four Reynolds-—stress transport equations for two-dimensional
thin shear lavers to two equations for turbulent shear stress and
k. These were then solved with the mean flow cquations and an
equation governing the transporlt of ¢, the dissipation rate of k.
The closure was arrived at by assuming the flow Reynolds number
to be very large and that GTG;/k = constant throughout the shear

layer with the constants given by plane shear flow measurements.

In view of these approximations, the boundary conditions cannot

ieed near the wall.

foms

be applied at the wall. Rather, they were app
In particular, the mean flow velocity was matched to the

logarithmic law-of-the-wall, the gradient of k was set equal to

+ The term "Hevnolds—-stress closure" is used to denoie closure
schemes that solves the full set of Revnolds-stress transport
b3

equations as well as models that solve the RHeynolds shear stress
and k equations ulone (e.g. Hanjalic and Launder 1972, 1976).
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zero, the shear stress was determined from the mean momentum
equation with the convection terms neglected and ¢ was set equal
to the turbulence generation rate. The model gave good
comparison with measurements away from the wall for a wide
variely of thin shear layers. However, detailed flow modelling
near a wall remained unattainable, just as in the case of the
mixing-length model where the same equilibrium turbulence
arguments were used to determine the behaviour of the mixing
length near a wall.

In view of the initial success of the Reynolds-stress
closure model, lalter researchers (e.g. Launder et al. 1972;
Mellor and Herring 1973; Mellor and Yamada 1974; Irwin and Smith
1975; Launder et al. 1976; Gibson and Rodi 1981) relaxed the
assumption, ;T:i/k = constant throughout the shear layer, and
solved the full set of Reynolds-stress transport equations.
However, the large-Reynolds—number assumptions were retained in
the modelling of the turbulent diffusion, redistribution and
energy dissipation rate terms in the Reynolds-stress transport
equations. Consequently, the boundary-layer flow very near the
wall had to be handled in the same manner as that proposed by
Hanjalic and Launder (1972). The boundary conditions for ETGi
near a wall, however, required special attention. In general,
either a slip condition for Grgi was imposed (Irwin and Smith
1975) or the Neuman boundary conditions were specified (Mellor
and Yamada 1974). The amounl of slip specified for GTG; depended
to a great extent on the type of flow considered. As a result,

the closure model was problem dependent and, in spite of the



improvement, it still could neot provide an accurale description
of the flow very near the wall. This, in turn, means that the
Reynolds—;tress closure cannot be used to estimate the Reynolds
number effects on turbulent flows, because in the immediate
vicinity of a wall viscous effects have to be important (Mellor

and Herring 1973).

The logarithmic law-of-the-wall assumption was generally
applicable for a wide class of simple turbulent flows. However,
it failed to provide a reasonably accurate estimate of the near
wall mean velocity in separating flows, in relaminarizing flows
and in complex turbulent flows (e.g. Stratford 1959; Jones and
Launder 1972a; Bissonnette and Mellor 1974). 1In order to remedy
this unsatisfactory boundary condition, Jones and Launder (1972b)

proposed to modify the two-equation model of turbulence, i.e. the

k-¢ model, for Reynolds-number effects. The shear stress, -u,u,,
was then calculated by assuming - u,u, = v, (8U,/dx,), where
v, = C# k2/e¢, U, was the local mean flow and x, was the

coordinate normal to the wall. With suitable modification to ¢
near a wall to account for viscosity effects, they found that the
modified k—~¢ equations can be integrated with the boundary
conditions, U, = 0, k=0 and ¢=0, applied at the wall. This
allowed the near wall flow to be calculated directly from the
governing equations, and good agreement with relaminarizing flow
measuremenlts (Jones and Launder 1972a) was obtained.

Furthermore, the logarithmic behaviour of the near wall flow was

recovered when the flow Reynolds number was sufficiently large.

Later, Hanjalic and Launder (1976) applied the arguments of Jones



and Launder (1972b) to modify their (Hanjalic and Launder 1872)
Reynolds-stress closure model to account for viscosity effects
near a wall., In their new closure model, they relaxed the
assumption Erii/k = constant. 1Instead, they assumed

4(u,u,)2/k based on the pipe and

"

(3/4)(u + vZ) = k and u3
channel flow measurements of Laufer (1954) and Eckelman (1970).
This way, the near wall behaviour of Gg/k, i.e. ;g/k -» 0 as

x, » 0, was satisfied. Their calculated mean velocity and shear
stress results were in excellent agreement with the channel flow
measurements of Patel and Head (1968) and Eckelman {(1970) and the
relaminarizing flow data of Jones and Launder (1972a). in spite
of these successes, the near wall behaviour of ETEZ/R cannot be
calculated. To do this, one needs to resort to a full Reynolds-
stress closure model where all the transport equations for GT;i

are solved rather than the equations for k and u,u, alone.

1.3 Present Objectives

The primary objective of this study is to formulate a full
Reynolds-stress closure model so that the calculalions can be
carried all the way to the wall and satisfy the boundary
conditions at the wall for 0., G?G; and €. Validation of the
model is carried out by comparing the calculated results with
fully-developed turbulent pipe flow data at two moderate Reynolds
number. By selecting fully-developed turbulent pipe flows, the
complexity involved in solving the transport eguations can be
greatly reduced because the governing equations simplify to
second—order, non-linear ordinary differential equations. This,

in turn, allows the various modelling assumptions to be assegsecd



easily. A secondary objective, is to investigate the effects of
redistribution and diffusion models on the modelled flow. To
this end, the models of Rotta (1951) and Launder el al. (1975)
for pressure redistribulions are examined in detail together with
a non—-isotropic and an isotropic gradient diffusion model for
turbulent diffusion. The effects of diffusion modelling are
further investigated by simplifying the transport terms in the
Reynolds~-stress equaltions according to the suggestion of Rodi
(1976). This results in a set of algebraic equations for the
Reynolds stresses and can be solved with the low-Rleynolds—number
form of the k-¢ equations {Jones and Launder 1972b; Chien 1980).
The final objective, then, is to compare all the above model
calculations with the resuits obtained from the basic two-
equation model and to identify a model thatl performs the best in

pipe flow calculations.



2. Low-Reynolds—Number Closures

For an incompressible flow, the transport equations for the

Reynolds stresses u;u, can be concisely expressed in Cartesian

tensor as

Duu, o | — p
DL = 5§:L' Uy by o ;(Jikuj 8y
+ (3 u__Ll_l__]_l - I ugukél]‘L 4 uiuk.a_lj.j_]
o b ST L %, Xy,
p,ou, du, du, du,
RO (it Tk B - 2y =i 3,
p(axj axi) 2> ox, Ox, (1)

Here, lower and upper case u’s denote fluctuating and time-
averaged velocity components, respectively, and overbars imply
the usual time averaging of the correlations in question.

The terms in (1), from left to right, in general, can be
interpreted as the convection, diffusion, production,
redistribution and viscous dissipation of ETE;, respectively. Of
these five groups of terms, the convection and production terms
arce exact and do not need modelling. In the past, only high-
Reyvnolds—-number models have been proposed for the diffusion,
redistribution and dissipation terms. Consequently, the
resultant closure model is not valid for flows near a wall
(Mellor and Herring 1973). Although some advances toward this
direction have been méde by Hanjalic and Launder (1976), a full
Reynolds-stress closure for low—Reynolds—number turbulence is
still not available. In the next section, an attempt will be
made to close (1) so that the resultant transport equations are
valid for low as well as high-Reynolds-number flows. At least

two different models are proposed for each of the three terms



that required modelling. The relative merits of these models
will be investigated. Diffusion modelling is further examined by
greatly simplifying the transport equations into algebraic
equations for the Revnolds stresses. Two approximations will be
investigated; one is the equilibrium turbulence assumption and
another is Rodi’s (1976) approximation. A discussion of these
algebraic stress closures is given in Section 2.2. Finally, the
two-equation closure model of Chien (1980) for low-Reynolds-
number turbulence is included in Section 2.3 for the sake of

completeness.

2.1 Full Revnolds—-Stress Closures

In order to model (1) for low-Reynolds—number turbulence,
appropriate models for the redistribution, diffusion and
dissipation terms have to be formulated. The subsequent sections

provide a first attempt for this endeavour.

2.1.1 Redistribution Models

Since the term

P du, + ou,
P (axj axi)

has a zero trace for an incompressible flow, it acts to diminish
the difference between the normal-stress components (Hinze 1959).
Therefore, it neither produces nor destroys turbulence energy.

Furthermore, p satisfies the equation

1 32 p [ 32 (u.u, - u.u,) du, oU,
—_— . = - + —_—1 ]
p OX, Ox, Laéiale 1 26xj6xi ! (2)



obtained by taking the divergence of the equation for u;,. Since

v does not appear explicitly in (2), this suggests that, to first

order, any high-Reynolds-number model for this term can be

adopted for the present study. Specifically, the redistribution

model proposed by Launder et al. (1975) is adopted. This can be

written as

pedu; | duy, o _ < o2
Plax, T oax)) Cig (uy = 38,00
2 2
o (Py; - §61JP} = p. (D - 70 5F)
- 7,k S;, , (3)
_ AU, au,
where Pi\j = - [ u;uy 5;? +  u;u, Eraal i
ou ou
Dij = - [uiuk 5-}-{-{%—(’ ujuk 5;1:—],
aU, ou.
.= —1 —
Sis Ix * ax, ’
ou,
P = - u,u, 5;:
and C;, «,, 8,, and ¥,, are model constants. According to
Launder et al. (1975), «,, f§,, and ¥, are not independent
constants. Rather, they are related to one constant C,. These

and other model constants are listed

Launder et al.’s model includes
antisymmetric mean-strain effects on
their influence on near

However,

been clearly demonstrated. In order

mean—~strain modelling on the flow near a wall,

simple return-to-isotropy model for the redistribution terms will

in Table 1 for reference.
both the symmetric and

redistribution modelling.

wall flow calculations has not

to evaluate the effects of

Rotta’s (1951)



also be examined in the present investigation. The model is

given by (3) by setting «, = g, = ¥, = 0. -

2.1.2 Wall Correction to Redistribution Modelling

Since the presence of a rigid wall affects the pressure
field, thus impeding the transfer of turbulence energy from the
streamwise direction to that normal to the wall, Launder et al.
(1975) propose a wall correction to the pressure redistribution
model to account for this wall effect. The correction is
designed specifically to model the decrease of turbulence energy
transfer to the normal direclion. Since then, the wall
correction has been used by Irwin and Smith {1875} to model
curved shear flow and by Gibson and Launder (1978) toc model
atmospheric boundary layers. However, in these calculations, the
near wall flow is not resolved directly. Therefore, the value of
wall correction in pressure redistribution modelling has not been
clearly demonstrated. The present approach allows the near wall
flow to be calculated directly and, thus, provides a good
opportunily to assess the relative merits of the wall correction.

In view of this, the wall correction proposed by Launder
et al. (1975) will also be investigated. When ithis correction
term is included in the pressure redistribution modelling, the

complete model becomes

10



p ,9u;, _ du o € 2
; (EJ- + -a?l-> = Cl E(‘ulu.} :—3-61:}{‘)

- ¥ k Sy
k3/l— €
i e gloiuy - 300,P)
+ Cou(Piy = Dy (4)

where x, 1s measured normal to the wall and the model constants

C and C,, are specified in Table 1.

1w

2.1.3 Diffusion Models

The other terms in (1) that need modelling are the diffusion
and viscous dissipation terms. Since these terms involve ¥
explicitly, their high-Reynolds—number models (lLaunder et al.
1975; Kolmogovor 1941) have to be modified to account for
viscosity effects. This can be easily carried out for the
diffusion model by including the term v(aG:E;/axk) in the final
diffusion model for low—Reynolds-number flows just as Hanjalic
and Launder (19768) have done. If pressure diffusion is
neglected, as suggested by Hanjalic and Launder (1976), the model

for the diffusion term becomes

3 _ ou,u, . p

3%, [~ wjujuy, + ax_ -+ ;(5Jk“i + 85 uy) ]
3 du, u, —3u, u —3u, u,

= + -——l—i‘ + . —k 3
X, [ axk ( e U 3¢ Us 4y X,

+ uiu] @_J_ul:L) ]

(5)
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This model is based on the gradient diffusion assumption and
is tensorially correct. Also, it gives a non—-isotropic
diffusivity. On the other hand, past researchers (e.g. Mellor
and Yamada 1974) have found that a much simpler isotropic
diffusivity model for high-Reynolds—-number turbulence works
equally well as the non—-isotropic one, even though the model is
tensorially inconsistent. Whether this also holds true for low-
Reynolds—number turbulence will again be examined in the present
investigation. To this end, the simpler isotropic gradient

diffusion model given by

o ) du. u, P .
ax, L Wiwsue tovgp s D8y 4 suy)]
d r du, u.
= —_)
a}(k L(V + Vt) an ] s (6)

where », is defined as

and f, is a damping function specified in Table 1, is also
investigated. It should be pointed out that inherent in this
model 1s the assumption that pressure diffusion is not important
and can be neglected. A comparison of these two models will,
therefore, provide a clear indication on which gradient diffusion
model is more appropriate for low-Reynolds-number turbulence

closure.

2.1.4 Dissipation Models

For high-Revnolds-number turbulence, Kolmogorov (1941)

assumed viscous dissipation to be isotropic. However, near a



wall this assumption is no longer valid because the turbulent
flow Reynolds number in this region is not large. To see how
Kolmogorov’s dissipation model should be modified to account for
Reynolds—number effects, the Reynolds-stress equations (1) are
examined for near wall behaviour with the proposed diffusion
models (5) and (6).

When (5) is used in conjunction with the Reynolds-stress
closure of Hanjalic and Launder (1976), good results for channel
(or two-dimensional) flows are obtained. However, when it is
used in conjunction with the full Reynolds-stress closure for
axisymmetric flows, the following difficulty would appear at the
wall. The difficulty is associated with the term
(6/6xk)(v63733/6xk). If cylindrical coordinates (x, r, &) are
used to expand this term for fully-developed pipe flows, then at

the wall, the leading term becomes

ou, u, 9, 9du, u. Jyv du, u.

J——I—J- = —(y—i—3 putiithed Sk B
rJa (r or ) ar(” or )+ r or ! (8)
where J = 0 or 1 for two-dimensional or axisymmetric flows,
respectively. At the wall, u;u; = a;;y¥ + b, ;y¥*1 + --- (Mellor
and Herring 1973), where N 2 2, a;;, b;;, ——— are constants to be
determined, and vy = R - r. Substituting this expansion into (8)
gives

1 93 du. u

______(J__l__.]_
rJ7or ar

(N-1)Na, ;vyN-2

+ [N(N+1)b,,» - #’%_;_] N-1 4 O(yN) . (9)

Therefore, for N=2, all the terms on the right hand side of (9),

except the first term, vanish at y = 0, and this is true for all

13



near wall flows, be it two-dimensional or axisymmetric. This
means that molecular diffusion is finite at the wall. Since the
term (9/0x,)(vdu;u,/dx,) does not need modelling and » does not

appear in other diffusion terms; additional terms are required in

the modelling of the dissipation function, 2v(aui/axk)(auj/axk),
in order to balance the finite molecular diffusion at the wall.
The foregoing arguments, therefore, suggests that the Kolmogorov
(1941) high-Reynolds—-number model for the dissipation function

should be modified to give,

du, du, _ 2 2vs,, 8, uu,
21’5:&-:- - 35iJ€ + (62kxk)2 3 (10)

for low—Reynolds—number flows.

The dissipation model (10) is not isotropic when the
Reynolds—number is finite. However, at very large Reynolds
number (10) approaches Kolmogorov’s model asymptotically and the

correct limiting behaviour 1is recovered.

2.2 Algebraic Stress (ASM) Closures

Less sophisticated closure models for high-Reynolds—-number
turbulence have also been put forward by various researchers.
Specific assumptions are put forward to simplify the Reynolds-
stress equations (1) so that the equations are reduced to
algebraic equations for the Reynolds stresses. The equilibrium
turbulence assumption is used by So (1975, 1977) and So and
Mellor (1978) to calculate curved shear flows, rotating and
swirling flows. On the other hand, Rodi (1976) proposes to

approximate the transport (convective and diffusive) terms in (1)

14



by the stress ratios'z?ﬁg/k. Since then, this non-equilibrium
turbulence scheme has been used by Gibson (1978), Gibson and
Launder (1978) and Leschziner and Rodi (1981) to calculate a wide
variety of turbulent shear flows. These closure models will also
be extended to low—-Reynolds—number turbulence and their
performance compared with the full-Reynolds—-stress models to
further identify the effects of diffusion modelling.

In the course of modelling (1) taking the algebraic stress
closure approach, the solution of two more transport equations
are required (Gibson 1978). Normally, the k and ¢ equations are
solved in addition to the mean flow equations. Therefore, the
modifications of these closure models for low—Reynolds-number
turbulence can be achieved via two different approaches. One is
to modify the basic -equations for k and ¢ and another is to
modify both the k-¢ equations and the models for pressure
redistribution and dissipation. 1In Section 2.1, it has been
shown that the high-Reynolds—-number form of the pressure
redistribution models is also applicable to low-Reynolds—number
flows. However, the dissipation model has to be modified for
low—Reynolds—-number turbulence. In algebraic stress closures,
turbulent diffusion is either neglected or approximated by the
stress ratios via Rodi’s approximation. If the dissipation model
is modified to account for viscosity effects, then it can be
shown that, under the assumption of equilibrium ASM, the
resultant algebraic stress equations are not balanced at the
wall. On the other hand, under Rodi’s approximation, the

additional dissipation term would cancel out with the extra

15



dissipation term introduced by Chien (1980) in the k equation.
Consequently, the approach taken here is to modify the k-«
equations alone. The modified forms of the k-¢ equations are
given in Section 2.3, while the simplified forms of the
Reynolds—-stress equations needed for the equilibrium and non-
equilibrium algebraic stress closures are specified in the

following two sections.

2.2.1 Equilibrium Assumption

If the equilibrium turbulence assumption is invoked,
production of turbulence energy is equal to its dissipation rate.

The Reynolds—stress equations (1) simplify to

au, — 53U, P, ou, 3u,
X - A et 5 . ——l sl — 3 _X.
0 [ulukaxk ¥ “z”kaxk * p(ax. * axi>
du, oJu,
~ 9, 9Y4; ou,;
2y %, ox, . (11>

The high-Reynolds—number models for the pressure redistribution
and dissipation terms are used to close (11). These are given by

(3) and the Kolmogorov isotropic dissipation model, or

du. Adu,.
b Sl 5. . 12
vaxk N 3. . € (12)

17

2

(AN

Again, Rotta’s return-to-isotropy model is obtained from (3) by
setting «, = g, = ¥, = 0. Both Rotta’s and Launder et al.’s

models will be investigated and the results compared with the

full Reynolds-stress models.

16



2.2.2 Non-Equilibrium Assumption

In this case, the transport terms in {1) are approximated by

Rodi’s (19768) assumption and (1) is reduced to

u, u, — JU. —9U,
et - = - . u, —=1- . B ——
- (P €) [uJuKaxk + “x“kaxk]
+ P04 Qw5 Ou; duy (13)
p 9%, 9%, ox, 9x,

If (3) and (12) are used to model the last two terms in (13),
algebraic equations for E?G; can be derived from (13). It 1is now
clear that if (10) is used to model the dissipation term, ¢ in
(13) will have to be replaced by ¢ + 2vk/x% (see eq. (14)).

The net result is again equivalent to (13) with the dissipation

function given by (12).

2.3 Two-Equation Closure

Equation (1) can now be expressed in terms of u;u;, U, k, €
and their gradients. Transport equations are, therefore,
available for all unknowns except ¢. Two options are available
for ¢. Either the equation proposed by Jones and Launder (1972b)
or the equation modified by Chien (1980) for low-Reynolds-number
turbulence can be used. Since the k equation obtained by
contracting (1) using the proposed models is similar to that

proposed by Chien (1980), it is decided that Chien’s e¢—-equation

would be more appropriate for the present full Reynolds—-stress

closure. Also, (12) and (13) can be expressed in terms of u;u;,
U,, k, ¢ and the gradients of U;. To complete the definition of

k and ¢ in the flow field, two equations governing the transport

of k and ¢ are required. Since the e—-equation modified by Chien
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(1980) is used in the full Reynolds-stress closure it would be
appropriate to also use the k-equation modified by Chien for low-
Reynolds—number turbulence rather than by contracting (1) with

models given by (3), (5) and (10). These two equations are:

Dk _ o ok _ 2vk
ﬁ = —an [(V + vt)—a—Xk] + P - € Xg 3 (14)
De 5] v de € €2
—_ = Lt = - -
bt = ax. Lt 503k 1* CarpP - Ceafuyg
2ve -C,x,u, /v
_ 2 e “a%z2Yx , (15)

where x, is measured normal from the wall and the model constants

C C 0. and damping function f, are specified in

€1 €2 C4’ €

Table 1. The diffusivity v, is again taken to be given by (7).
Therefore, the two—equation closure is given by solving (14) and
(15) together with the mean flow equations. It should be pointed

out that, in the full Reynolds-stress and algebraic stress

closures, an assumption for the turbulent stresses, u;u;, is not
required. For the two-equation closure, a gradient transport

model for u;u; is invoked, such that

_ oU. oU, 2
— uiuJ. = vt(g;: + 6—x:-) - §613k . (16)
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3. Fully-Developed Pipe Flows at Moderate Reynolds Numbers

Fully-developed turbulent pipe flows at moderate Reynolds
numbers are used to validate the full Reynolds-stress and
algebraic stress models. If models (4), (5) and (10) are
substituted into (1) and the component equations are written in
cylindrical coordinates (x, v, ) with mean and fluctuating
velocities given by (U, 0, 0) and (u, v, w), respectively, then
the governing equations including the simplified mean flow

{Laufer 1954) and ¢ equations are:

R (17)
LA v 2 Sy - o 5wy

- L - iy, @ G TN (18)
LA v o koo 7 4 L dpe o K Goduy g

- [e, - ¢y, c—}(f;—ii—) Iy v - %k)

al-e e he ce, B IEE -

_ 2vuz 0, (19)
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1 k —,dv2 2C. k — dw?
rar PO r 3Gl - SV
_4C, k —(vZ - wZ) k3/2 2

v - me g -5
_ @ _ 28, k372 = 48

2 [3 3~ Cow ey WY G

2 2vv2 2 vZ - wZ
T3 T em2 T2 "0 (20)
1 k=, dwZ k — (v - w?)
T [r(v * Cs?vz) dr ] r ¢ we r

1 d r2C.rk — (vZ - w?) zc k —dw?
M r dr [ € w2 r ] + € \& dr

k372 2 —dU

- [C1 - C,. T(R=T) ] (w2 - §k) - 3(a1 + pl)uv

2 20wl vZ - w2

3 € - ZE:;;E + 2v 2 =0 , (21)
1i d k — . duv 2C. k — uv
rar [P 26,2 v ] - T owE

1 d k — dv2 C. k — dw2z
tra Dz w g1 -2 T w

k3”72 —_
- [e, - ey m] ¥ uv -
k3/2 k3/ b's dU

- f3 [(1 - a, *t C2w —C—(TI‘_) )V - (ﬂl + C2w c-(—ﬁ—r——)——)u + ka] ar

2vuv GV
- = —— =0

(R-r)2 ¥ r2 (22)

In writing down these equations, a damping factor f; specified in
Table 1 and suggested by Hanjalic and Launder (1976) is included
in the stress production term of (22). This damping factor is

found to be necessary in the course of solving (17)-(22), because
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without it shear production near a wall is found to be over-
predicted. Similarly, turbulent diffusivities near a wall are
found to be way over—prediéted if C_ is taken to be a true
constant. In all subsequent calculations, C_, is damped by a
factor f, similar to that specified in (7). These and other
model constants are specified in Table 1 and are consistent with
those recommended by various researchers (Rotta 1951; Launder

et al. 1975; Chien 1980).

Boundary conditions are specified at the wall and at the

symmetry plane. These are given by:

U=9¢€¢=u2 = v2 = w2 = uv = 0 at r = R (wall), (23)
de _ du? _ dvZ _ dw? _ |

dr dr dr dr } at r = 0 . (24)
uv = 0

Only one boundary condition is specified for U, since the
symmetry condition for U has been utilized to evaluate the
integration constant when the mean momentum equation is
integrated to give (17).

Similarly, component equations for (1) using (4) and (6) for
closure can also be written down. However, for brevity’s sake,
they are not included here. As before, it is found necessary to

damp the shear production term in the equation for uv by the

factor f,. Rotta’s model is given by the same set of equations
with « = g8, = v, =€, =C,, = 0. If no wall correction is
required, C,, and C,, should be set equal to zero.
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For algebraic stress and two-equation closures, the
transport equations to be solved are (17), (18) and a
corresponding k—-equation which can be written as

d

2oy - wgh - - B2 0 . (25)

1 _ _2vk
r r (R-r)2 ~

In the case of algebraic stress closures, the stresses u;u; are

provided by (11) or (13) which can be written out in their

component forms. For two—-equation closure, —-uv is provided by

(16) which reduces to

S ou
- uv = Ve (W . (26)

The boundary conditions for k are:

k =0 at r

(27)
dk _ at r=0.}

1l
o
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4, Method of Solution

The set of equations (17)-(22) with boundary conditions (23)
and (24) are solved numerically by the Newton iteration scheme

{Na 1979). First, normalization of the dependent variables U by

Ugy U;uy by uZ and ¢ by u}/R are carried out, while the
independent variable r is made non-dimensional by u,/v, so that
Y* = u,(R-r)/v is the new dimensionless coordinate. Therefore,
the integration from the pipe wall to the centerline is now
carried out from Y+ = 0 to Y* = Re, where Re = u,R/v is the
turbulent Reynolds number to be specified. Re is related to the
pipe flow Reynolds number R, = U, D/v by Re = (u,/2U,)R;.
Therefore, once R; and the pressure drop along the pipe are
known, Re can be determined and it becomes the only input
parameter to the problem.

Next, the six first- and second-order ordinary differential

equations are written into eleven first-order equations by

defining new variables for d(uiuj/ui)/dY+ and d(eR/u§)/dY*.

If these eleven variables are denoted by y;, i = 1, .... 11,
such that y, = U/u,, v, = eR/ug, vy, = ;E/uﬁ, ¥, = ;37u§,

we = WZ/uz, ¥, = Uv/uZ, w, = dy,/dV*, y, = dy,/dY*, ¥, = dy,/dV*,
¥,o - dy,/dY*, v, , = dy,/dY*, then their derivatives can be

approximated by centered-difference gradients and averages

centered at the midpoints of the grid, defined by

V5= 05 Yr, = ¥r ., 4+ hy , §j=1,2, ..., Mj Y*, = Re; (28)
d'/fi — (w1)1 _ (u’l [
A . Yioa | (29)
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The resultant equations are nonlinear algebraic equations.
Therefore, they have to be linearized before the Tactorization
scheme can be used. Newton’s linearization scheme is used so

that the Newton (k+1l) iterates for (Wi)j can be written as
(W );CR*20 = (g, ), ¢8> + §(y; ), () . (30)

These are then substituted into the eleven first-order
differential equations. If guadratic and higher—-order terms in
§(w,),“%> are neglected, the resultant linear algebraic equations

can be put into vector—-matrix form as
(A} {s8] = [¥] , (31)

where {é] is the coefficient matrix of order MxM and its elements
are matrices of order 1Ix11. The matrix [A] is of the

tridiagonal form, while the matrix [¥] is a column matrix of

oy RN ; . P rs s e
{w;), and (¢i;j-1. The boundary conditions are:
§w; 3y = 0 i= 1, (.., 6 ;
N o . .
S W, < U (32)
s{w, 3y = 0 ; i=7, ..., ..., 10 .

Oncve the equaiions are put into the Torm {31) and {32}, they can
be solved interatively using any matrix inversion itechnique.
Tteration ts carried out until {g} meels certain accuracy
criterion. For bthe present study, the accuracy criterion is
chosen as

(33)

A
—
o

[}
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A non—uniform grid is used to carry out the calculations.
Typically, five grid points are specified between Y* = 0 and

Yt = 5. This is followed by 15 grid points between Y* = 5 and

Y+ 65. The rest of the region 65 £ Y* = Re is then divided
into 30-50 grid points depending on the problem considered. In
general, this system of grid spacing is sufficient to give
convergent solution after .1500 iterations.

The equations for the other closure models can be similarly
solved. However, for brevity’s sake, they are not outlined in
detail here. Anyway, once a solution scheme has been developed

for the more complex set of equations (17)-(22), the same scheme

can be easily adapted to solve a set of simpler eguations.
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5. Presentation of HResults

Fully-developed pipe flows at two different Reynolds numbers
are selected for comparison with the model calculations. These
are the detailed measurements of Laufer (1954) at R, = 50,000,
and of Schildknecht et al. (1979) at Ry, = 21,750. They are
chosen for their careful measurements of the turbulence field
near the wall. Consequently, they would provide accurate data
for the evaluation of the full Reynolds—-stress model for low-
Reynolds-number turbulence. The input parameter for these two
calculations is Re = 1052 and 489, respectively, for Laufer’s and
Schildknecht et al.’s experiments. Calculations are carried out
to compare the performance of different redistribution and
diffusion models. The redistribution models examined are Rotta’s
(1951) return-to-isotropy model and Launder et al.’s models
including mean—-strain and wall effects. As for diffusion, two
models are investigated; one is Launder et al.’s model given in
(5) and another is an isotropic model given in (6). The effects
of diffusion modelling are further examined by considering less
sophisticated closure models such as algebraic stress closures.
Again, redistribution modelling effects are studied by comparing
the Rotta and Launder et al. models. Finally, these model
calculations are compared with the simple two-equation closure
results.

In view of the large number of calculated results and their
close similarities, the comparisons with data are presented
separately rather than together in one figure for each flow

property. Although this involves many more figures to be
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presented, it will give a clearer comparison of each closure
model with measurements. Altogether eleven model calculations
are made for each experiment. These are organized for
presentation in the following manner. With the exception of the
k-¢ model calculation, each set of comparison consists of eight
figures where the model calculations of both experiments are
presented. These eight figures, numbered a through h, show the
comparisons of U/u, in semi-log plot, u/U,, uv/uz, k/u2,

eR/ud, u,u; /uz, U u,/k and uv/k versus 1-2r/D in the sequence
given. The comparisons of the near wall behavior are shown as
insets in each figure, and the coordinate used is the normalized
wall coordinate Y*. Only five figures are presented for the k-«
model calculations. These are U/u, in semi-log plot, U/U,,
Evyuﬁ, k/uZ and e¢R/u} versus 1-2r/D.

The results for the full Reynolds-stress closure using (5)
for diffusion modelling are presented in Figures 1-3. Rotta’s
model results are given in Figure la-lh, while Launder et al.’s
model calculations without and with wall correction are given in
Figures 2a-2h and 3a-3h, respectively. HResults for full
Reynolds-stress closure using (6) for diffusion modelling are
shown in Figures 4-6. The first eight figures give the
calculated results of Rotta’s model and the other figures those
of Launder et al.’s model without and with wall correction.
Algebraic stress model calculations are presented in Figures
7-10. The first sixteen figures give the results of the
equilibrium turbulence calculations using Rotta’s and Launder

et al.’s model. This is followed by the same calculations

27



assuming non—equilibrium turbulence. Finally, the k-¢ results
are presented in Figures lla-1lle.

For the sake of clarity, a discussion of these results
and their comparisons with measurements is presented in three
different sections. These are: (1) effects of mean-strain

modelling, (2) effects of diffusion modelling and (3) effects of

wall correction on redistribution modelling. Finally, the k-¢

equation results are presented in Section 5.4.

5.1 Effects of Mean-Strain Modelling

The equations (17)-(22) with boundary conditions (23) and

(24) are solved assuming C, = C,, = 0. For each experiment, two
calculations are carried out; one with «, = g, = ¥, = 0 and
another with these constants as given in Table 1. Therefore, a

comparison of these two calculations with the measured data would
reveal the relative merits of mean-strain modelling. The results
are presented in Figures 1 and 2. Other comparisons of the
effects of mean-strain modelling, subject to different
approximations for turbulent diffusion, are given in Figures 4
and 5 for isotropic diffusion modelling, in Figures 7 and 8 for
equilibrium algebraic stress closure and in Figures 9 and 10 for
non-equilibrium algebraic stress closure. For ease of reference
later on, the set of figures 1, 2; 4, 5; 7, 8 and 9, 10 shall be
designated as set A, B, C and D, respectively. Therefore, figure
sets A and B give the full Reynolds-stress closure resulls, while
sets C and D show the algebraic stress closure calculations. A
comparison of the results within each set will indicate the

relative merits of mean-strain modelling given a fixed diffusion
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model for closure, while comparisons between different sets will
elucidate the effects of diffusion modelling.

In general, both redistribution models give reasonably good
results for U, uv, k and ¢ (Figures a—e of each set of Figures A,
B, C, D). However, they fail to replicate correctly the
behaviour of the normal stresses near the wall (Figures f-h of
each set of Figures A, B, C, D). The calculated mean U is in
good agreement with the measured mean U in the near wall region,
but shows substantial discrepancy in the pipe core (Figures b of
each set of figures), even though the logarithmic behaviour in
this region is recovered (Figures a of each set). The measured U

can be correlated by a logarithmic law-of-the-wall, such that

aln¥Y* + g , (35)

g
u*

where a = 1/k, « is the von Karman constant and g is
parametically dependent on R, (Afzal and Yajnik 1973). For the
experiments of Laufer (1954) and Schildknecht et al. (1979) the
constants thus determined are listed in Table 2 together with
the quantities U /u,. Likewise, these quantities can also be
determined from the calculations. They are also listed in

Table 2 for comparison. It can be seen that the measured slope
of the log-law is not in agreement with the calculated slopes and
that the calculated U,/u, are always lower than the measured
values. In view of this, it is very difficult to conclude which
of the two redistribution models gives a better description of

the mean flow.
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In order to understand the discrepancy noted between the
measured and calculated U, the mean U obtained by integrating
(17) using the measured uv as input is also shown in Figures a of
each set of figures for comparison with the model calculalions.
The corresponding «, g and U, /u, are listed in Table 2. It can
be seen that the mean U thus determined is in excellent agreement
with that calculated from Rotta’s model and the k-¢ closure. On
the other hand, Launder et al.’s model consistently under-
predicts the slope and U /u, but over-estimates the constant g.
Both models, however, predict an increase in g§ as R, is decreased
just as in the analysis of Afzal and Yajnik (1973). As for the
behaviour of ;V, k and ¢, the two model calculations are in
excellent agreement with measurements, especially near the wall.
This demonstrates that the modified dissipation model is valid
and can account for the near wall behaviour very well.

The performance of this dissipation model is quite
independent of the redistribution model (Figure sets A and B).
Therefore, based on the above comparison, it can be concluded
that, as far as the mean flow, uv, k and ¢ behaviours are
concerned, the simple return-to-isotropy model of Rotta is just
as promising as the more complete model of Launder et al. (1975).
The performance of the Launder et al. (1975) model is found to be
not as good when used in conjunction with algebraic stress
closures (Figure sets C and D). 1In view of this, mean strain
modelling is found to have a negative effect on the overall flow
behaviour when turbulent diffusion is improperly modelled

(compared figure sets A and B, C and D). A similar conclusion
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has also been reached by Yao and So (1985) in their analysis of
curved-pipe flow using rapid distortion theory. The present
results together with Yao and So’s (1985) analysis, therefore,
point to the modelling of the turbulent redistribution terms by
return—-to-isotropy models for fully-developed pipe flows.

Even:  though different levels of V2 and w2 are predicted by
Launder et al.’s model, their comparison with measured data is
slightly better than those obtained from Rotta‘s model (Figures f
of each set). Essentially, both models under-estimate the rise
of uZ and greatly over—-estimate the rise of v and_v-vE near the
wall. They also fail to predict the isotropic behaviour of the
turbulence field at the pipe center. As a result, the k
distribution in the pipe core is over—-predicted (Figures d of
each set). A comparison of the stress ratios,vETEj/k, clearly
shows the inadequacy of the two models (Figures g and h of each
set). Launder et al.’s model gives a better correlation with
data for ;;Vk (Figures h of each set); however, it leads to a
rather flat variation for ETE;/k (Figures g of each set).
Besides, the limiting values of ETG:/k at the wall are not
predicted correctly. 1In evaluating the limiting values, the

measured data is fitted to the expansions

u;u; = a;; yN o+ by oyt o+ oLl
near a wall. This allows the a;; and b;; to be determined and
hence the values (ET::/k)w. For example, experimental values
thus determined are: (uz/k), ~ 2, (vZ/k), = 0 and (wZ/k), ~ O for

Laufer’s data. The corresponding calculated values are

(uz/k), ~ .9, (v2/k), = (w2/k), ~ .55 for Rotta’s model and
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(GEVk)w ~ .9, (;?/k)w ~ .5 and (;_Z-/k)w ~ .6 for Launder et al.’s
model. Therefore, the rapid decrease of ;E/k and steep rise of
;Eyk and w2 /k near a wall are not predicted.by the models at all
(Figures g of each set). Based on these calculations, it seenms
that the assumption, ETE;/k are uniform across the flow, is
inherent in these closure models. The effects of diffusion
modelling on the behaviour of G?;j/k near a wall will be further

examined in Section 5.2.

5.2 Effects of Diffusion Modelling

In order to investigate the effects of diffusion modelling
on turbulence closure, another set of calculations is performed
with a vastly different diffusion model. This time an isotropic
gradient diffusion model for the turbulent stresses is assumed as
in (6). The diffusivity v, is taken to be given by (7) with the
damping function f, near a wall included to account for wall
proximity effects. Again, calculations are carried out for both
the Rotta and Launder et al. models for the redistribution terms.
The solution of (17)-(22) is performed assuming C,, and C,, 6 to be
identically zero.

The results are also plotted in Figures sets A-D for
comparison with the previous calculations. Calculated values for
«, f and U, ,/u, are listed in Table 2. It can be seen that
Rotta’s model now gives rise to over-prediction of « and

U, /u, and under-estimation of g. However, the parametric

[«] '/
dependence of § on R, is not correctly predicted. On the other

hand, Launder el al.’s model also gives an incorrect trend for §.

Instead of predicting an increase for g as R, decreases, it gives
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a g that decreases slightly with R;. Also, the slope, «,
increases as R, decreases. In view of these incorrect trends, it
can be concluded that the performance of Launder et al.’s model
does not fair well with Rotta’s model when an isotropic gradient
diffusion model is used to approximate turbulent diffusion.

The near wall behaviours of U,’GV, k and ¢ are again well
predicted. This shows that the modelled flow near a wall is
essentially governed by the dissipation model and is only

slightly dependent on the diffusion and pressure redistribution

models. There are small differences in the calculations of
u;u; /uZ and u;u,;/k (Figures f-h of each set). However, they are

not significant enough to warrant a conclusion that one diffusion
model is better than another. Essentially, the shortcomings
noted in Section 5.1 for the diffusion model given by (5) are
also true for (6). Therefore, the calculations indicate that
once a gradient diffusion model is assumed, the results are only
slightly dependent on the behaviour of the diffusivity. An
isotropic model will give results that are quite similar to those

obtained from a non-isotropic one.

5.3 Effects of Wall Correction on Redistribution Modelling

The effects of wall correction on redistribution modelling
are assessed by solving (17)-(22) with the wall correction terms
included. In the course of solving these equations, it is found

that if the €, , and C,, values suggested by Launder et al. (1975)

are used convergent solutions to (17)-(22) are not possible. The
problem is traced to the coefficient of the terms (u;u;, - %k)
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in (19)-(21). After normalization, the coefficient becomes
[C,/Re — C,  (vy; + v, + 9 )372/28/2 y g]. If C,, = .125 is used,
as suggested by Launder et al., the coefficient becomes negative
over a substantial portion of the pipe. Consequently, these
terms (ET;: - %k) change sign and the equations are not balanced.

A similar behaviour is also observed in the production term in

1w and C, are

(20) because C,, is too large. Subsequently, C
slowly decreased until convergent solutions to (17)-(22) are
obtained. The values of C,, and C,, thus determined are shown in
Table 1. Two sets of model calculations are performed and these
are carried out with Launder et al.’s model for the
redistribution term and (5) and (6) for the diffusion model.
Actually, convergent solution is possible at some higher
values of C,, and C,,. However, the calculated results compare
poorly with measurements and they are not shown. Calculations
have been made with a series of values for C,, and C,, and they
lie in the range .025 £ C,, < .0625 and .003 =< C,, = .0075. The
largest values denote the upper limit for C,, and C,, where
convergent solution is possible. 1In general, the effects of wall
corrections are to increase «, § and Uo/ut, thus increasing the

discrepancies noted between calculations and measurements of the

mean flow. Furthermore, the peak value predicted for k increases

as C and C,, are increased. For example, the calculated peak

1w
value for k is more than 20% higher than the measured value when
C, = .0625 and C,, = .0075 are used. Reduction of these

constants to the values given in Table 1 gives the results shown

in Figures 3 and 6. Even then, the peak value of k is . 10%
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higher than measurements and the calculations obtained by
neglecting wall corrections (compare Figures 2 and 3, 5 and 6).
On the other hand, when Clw = .025 and C,, = .003 are used in the
governing equations, the calculated results are essentially
indentical to those shown in Figures 2 and 5. If plotted, they
practically overlap on top of the curves shown in Figures 2 and
5. Even in the near wall region, little differences are noted.
In view of these results, it can be said that if large values of

C and C,, are specified, wall corrections affect the

1w

calculations adversely. However, when small values of C,, and

C are used for the calculations, wall corrections have little

2w

effect on the results.

5.4 Two-Equation Closure Results

The results obtained by solving (14), (15) and (17) together
with the appropriate boundary conditions are shown in Figure 11.
They display characteristics very similar to those obtained from
an equilibrium ASM closure using Rotta’s model (Figure 7) and
from a full Reynolds-stress closure using (5) for diffusion
modelling and Rotta’s return-to-isotropy model for pressure
redistribution (Figure 1). The calculated «, g and U, /u, for
these three cases are very similar. However, both the k-¢
closure and the equilibrium ASM closure fail to predict the
correct increase in g as R, is decreased (Table 1 and Afzal and
Yajnik 1973). 1In view of this, the performance of the two-
equation closure is not as good as that of the full Reynolds-
stress closure. On the other hand, its prediction of fully-

developed turbulent pipe flow properties are better than any ASM
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closure models that used the Launder et al. model for pressure
redistributions (compare Figure 11 with Figures 8 and 10 and the
values of «, g listed in Table 2). Therefore, if only U, uv, k
and ¢ information are required in any pipe flow calculation, the
k—-¢ equation is a simple closure model to use and will provide

reliable results.
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6. Application to Fully-Developed Rotating Pipe Flows

One of the objectives of the present study is to develop a
closure model for solid fuel ramjet combustor calculation. If
the solid fuel ramjet combustor is used to power a projectile
fired from a cannon, the whole combustor would spin at a very
high rate. As a result of this spin, the flow inside the
combustor would also be subject to the influence of a large
circumferential velocity which has its maximum value at the
combustor wall and decreases rapidly to zero at the combustor
centerline. Therefore, the usual logarithmic law—of-the wall may
not apply to the flow very near the wall and the high—-Reynolds-
number closure model may not be applicable to this kind of
combustor flow calculation. With the development of the low-
Reynolds—-number closure models discussed in Section 5, they can
then be applied to assess the effects of rotation on the
calculated flow field correctly. This section presents the
results of such an assessment.

The effects of rotation can be best illustrated by
considering a simple model problem where rotation appears as the
only additional parameter in the flow field. Such a problem is
given by the fully-developed flow through a circular pipe
rotating at a constant speed. Since the above results indicate
that the equilibrium ASM closure using Rotta’s model is just as
good as a full Reynolds-stress closure model, the following
analysis is carried out with the equilibrium ASM closure model

only. 1In Section 6.1, the governing equations for the rotating
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pipe flow problem are specified. The results of this calculation

are discussed in Section 6.2

6.1 Governing Equations for Flows Through a Rotating Pipe

Cylindrical coordinates are again used to analyze the flow.
The pipe is assumed to rotate at a constant angular speed of Q,
so that the circumferential velocity of the fluid at the pipe
wall is W, = RQ. When the flow becomes fully-developed and
axisymmetric, 8/08 = 0, 3/9x = 0 and V = 0. The resultant mean

momentum equations reduce to:

__1dp , 1 d, du, _ 1 d, —

0= - o &x " r&™ T F arw) o (35)
1 d dw W 1 d —

0=tz qr P (qr - P - = oarrvw) (36)

and the corresponding k—¢ equations become

~ _ 1 d ., . ,dkq — dU —  dW W, 2vk
0=rar PO rroFl ~w G- Wi -9~ - @z G
_ 1 d v, deq e=—— dU _ e— dW W, _ €2
0= ¢ ar [rO+ahgl- Cuguv g~ Capwelgr - )~ Cafigm
_ 2ve -C,(R-r)u, /v
Tﬁ—:?)—z" e . (38)
The boundary conditions are
U=k=¢=0, W=W, at r =R, (39)
Ww=20, dU = g_}i = d_C = 0 at r =0

dr dr dr

If the equilibrium ASM with Rotta’s return—-to-isotropy model
is used to determine uv and vw, then the component equations for
u;u; can be obtained from (11) and are:

i
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- i@ -y - e - =0, (40)
—-Clﬁ(v_g—%k) +4VG‘I[—'—%¢ =0, (41)
SR C - SR S L e (42)
-clﬁﬁ—v—zgg+zﬁg=o, (43)
-cl.];m-mg_‘j-g) +2(?—T)¥=o, (44)
—clﬁm-ﬁ(g—ﬁ—g)—zﬁg—ﬁg—gzo. (45)

If it is further assumed that when fully-developed flow is

established, a solid-body rotation exists in the fluid, then

W= r (48)

and it follows from (36) that vw = 0. With these simplifi-
cations, (35) can be integrated to give (17) and (37) and (38)
reduce to (14) and (15) respectively. The solution of (40) to

(45) then gives

% =@z = S =12 (47)
C, 3

— ¢, -1 2 2k —dU

2 = 22 = - -

u G 3k e YWar (48)

- uw = T < uvﬁl . (49)
—_ cC, -1 2 k2 1 du
- = A - —_—
uv c,2 3¢ 4%2__W_.2 |dr ° (50)
' 1 5=z (g™)
C,%¢2 R
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Therefore, W, influences uv-according to (50) and uv in turn
affects U, ;;, k and ¢. The problem of fully-developed turbulent
flow in a rotating pipe is described by equations (14), (15),
(17) and (47) - (50). These equations are solved by the same

technique discussed in Section 4. The boundary conditions are

given by (839) rather than by (23) and (24).

6.2 Results

Since there are no measurements available for comparison
with the present calculations, only parametric studies are
carried out. In order to evaluate the effects of rotation on the
turbulence field, the rotation calculations should be carried out
with a known condition for the non-rotating case. Therefore, the
Laufer and Schildknecht et al experiments are selected as the
known non-rotating case and parametric studies on the effects of
rotalion are carried out with these cases as the base. Three
different calculations are performed. These are W, = .105U_,
.210, and .42U,, and the corresponding Q are 24 RPM, 48 RPM and
96 RPM, respectively. The results are shown in Figure 7 for
comparison with the zero rotation case.

In general, rotabion has a great influence on the flow even
in the fully-developed state. The effects of rotation on the
mean flow are clearly evident in the pipe core (Figures 7a and
7b) and it tends to decrease the extent of the log-law region as
Q increases. Also, the turbulent kinetic energy in the pipe core
is increased by flow rotation because mixing is being promoted
due to Lhe action of the centrifugal forces. At very high

rotation, i.e. € = 96 RPM, k remains fairly constant in the pipe
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core after the maximum value is reached near the pipe wall
(Figure 7d). Similar trends are also noted for other turbulence
properties (Figures 7e-g). However, since uv remains unaffected
by @ in a fully-developed flow (Figure 7c), E;/k décreases with
rotation (Figure 7h) and the region where G;/k is constant
disappears once there is rotation in the pipe. This shows that
the assumption, uv/k = constant over a substantial portion of the
pipe, normally invoked by turbulence modellers for simple
turbulent flows is not valid for rotating turbulent flows.
Finally, the shear stress uw is not small, and dependent on Q,
can even be larger than uv (Figure 7i). The maximum of uw does

not occur very near the pipe wall as in the case of uv. It

occurs about half-way between the wall and the pipe center.
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7. Conclusions

A low—Reynolds—-number turbulence closure for the full set of.
Reynolds-stress equations is formulated. The formulation is
based on a gradient diffusion model for turbulent diffusion,
conventional high-Reynolds—-number model for pressure
redistribution and a modified dissipation model that accounts for
viscosity effects near a rigid wall. Validation of the closure
model is carried out with fully-developed turbulent pipe flows at
two different Reynolds number. In general, the models give good
results for U, uv, k and ¢, but fails to reproduce the behaviour
of the normal turbulent stresses. The failings of the model are
even more evident when the structure parameters, Ergi/k, are
compared and are especially noticeable in the near wall region.
These discrepancies cannot be erased by modifying the
redistribution model to account for the reduced turbulence energy
transfer from the streamwise direction to that normal to a wall
as suggested by Launder et al. (1975). Neither can the
correlations between prediction and measurements be improved by
the inclusion of mean-strain terms in the>mode11ing of the
pressure redistribution terms. Furthermore, it is found that
once the gradient diffusion assumption is invoked, the calculated
results are only slightly dependent on the diffusivity
assumption. An isotropic diffusivity model will give results
that are quite similar to those obtained by using a non-isotropic
one.

All full-Reynolds-stress closure models examined show the

same shortcomings when applied to calculate fully-developed
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turbulent pipe flows. They all fail to predict the steep rise of
the normal stresses near the pipe wall and the isotropic
behaviour of the turbulence field at the pipe center. However,
the Launder et al model for pressure redistribution seems to
provide better agreement with data concerning the prediction of
the mean flow. 1In view of these results, it can be concluded
that a closure model based on the Launder et al. model for the
pressure redistribution and a non-isotropic gradient diffusion
model gives the best overall results for fully-developed
turbulent pipe flow calculations.

The same conclusion cannot be reached when algebraic stress
closures are considered, however. Here, Launder et al.’s model
gives results that are less appealling than those obtained with
Rotta’s model. As before, the manner in which turbulent
diffusion is modelled has little effect on this overall
conclusion; that is,it is true for equilibrium ASM as well as
for non-equilibrium ASM. The algebraic stress closures give
results that are closely similar to those obtained from full
Reynolds-stress closures. Only minor differences appear in the
predictions of the stress ratios, G:E}/k. Otherwise the
performance of the ASM closures is just as good. The same can
also be said of the two—equation closure. Even then, the best
overall prediction of the logarithmic law-of-the-wall is provided
by the full Reynolds stress model using a non-isotropic diffusion
model and the Launder et al. model for pressure redistribution.

Finally, a parametric study of rotation effects on fully-

developed turbulent pipe flows reveals that increasing rotation
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decreases the extent of the log-law region. Also, rotation tends
to increase the overall level of turbulent kinetic energy in the

pipe core, as well as other turbulent properties.
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Table 1 Model constants and damping functions i

Redistribution Model

Constants

or Functions Launder et al. (1975) Rotta (1951)
C, 1.5 ' 6.22
c, .4 —

o, (¢, + 8)/11 0
£, ' (8C, - 2)/11 0
v, (30c, - 2)/55 0
Ciw .050 0
C.. .006 0
c, L1171, J11¢,
o, 1.3 1.3
c , 1.35 1.35
c , 1.8 1.8
C# .09 .09
a .0115 .0115
. 5 5
s .008 .01
£, 1 - % e—(kz/Gvc)2
£, 1 - e_C3u* (R-r)/v
f 1 - -Czu, (R-r)/»
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Table 2.

A Comparison of the Calculated and Measured
Constants in the Logarithmic Law-of-the-wall

- Schildknecht
Laufer (1954) et al. (1979)
a B Uo/u* a B Uo/u*
() ()
Measured U 2.50 5.20 23.76] 2.50 5.45 22.25
' (0.40) (.40)
U from measured 2.60 5.00 22.29| 2.53 5.90 21.23
uv (0.385) (0.395)
Rotta’s 2.65 5.00 22.69| 2.66 5.31 21.08
" model - (0.377) {0.378)
Launder
Non—-isotropic et al.’s 2.46 5.69 22.10| 2.48 6.00 20.79
diffusion - model (0.4086) (0.403)
model
Launder
et al. . 2.62 5.53 23.04| 2.82 4.97 21.65
+ wall (0.382) (0.355)
correction
Rotta’s 2.62 5.00 22.60| 2.69 5.00 20.79
Isotropic model (0.382) (0.372)
diffusion
model Launder
et al’s 2.35 6.10 21.70] 2.45 5.95 20.43
model (0.428) (0.408)
Launder
et al’s 2.30 6.97 22.40)| 2.42 6.72 21.06
+ wall- (0.435) (0.414)
correction
Rotta’s 2.56 6 23.21| 2.65 5.81 21.55
model (0.391) (0.377)
Non-
‘equilibrium Launder 2.40 6.3 22.04] 2.42 6.3 20.45
turbulence et al.’s (0.417) (0.413)
model
Rotta’s 2.67 5.06 22.77| 2.64 5.36 21.15
model (0.375) (0.379)

- Launder 2.47 4.63 21.27| 2.51 4.78 19.78
Equilibrium et al.’s (0.405) (0.398) :
turbulence model

k-¢ eq. 2.62 5.06 22.76] 2.64 5.36 21.15
closure (0.382) (0.379)
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al."s (1979) measurements with model calculations. Model is

based on full Reynolds-stress closure with (6) and (10) used
Pressure redistri-
bution with wall correction is provided by (4).

for diffusion and dissipatation modelling.
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Figure 10a. Comparison of Laufer's (1954) and Schildknecht i
et al.'s (1979) measurements with model calculations.
S Model is based on ASM closure provided by (12)-(15).
.| Pressure redistribution model (3) is given by Launder
= et al. (1975).
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Figure 10b.
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Figure 10c.
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Figure 10d.
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Figure 1la. Comparison of Laufer's (1954) and Schildknecht
et al.'s (1979) measurements with model calculations.
Model is based on two-equation closure provided by
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