1,410 research outputs found

    Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface

    No full text
    Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry

    White noise reduction for wideband linear array signal processing

    Get PDF
    The performance of wideband array signal processing algorithms is dependent on the noise level in the system. A method is proposed for reducing the level of white noise in wideband linear arrays via a judiciously designed spatial transformation followed by a bank of highpass filters. A detailed analysis of the method and its effect on the spectrum of the signal and noise is presented. The reduced noise level leads to a higher signal to noise ratio (SNR) for the system, which can have a significant beneficial effect on the performance of various beamforming methods and other array signal processing applications such as direction of arrival (DOA) estimation. Here we focus on the beamforming problem and study the improved performance of two well-known beamformers, namely the reference signal based (RSB) and the linearly constrained minimum variance (LCMV) beamformers. Both theoretical analysis and simulation results are provided

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure

    Decay of Classical Chaotic Systems - the Case of the Bunimovich Stadium

    Full text link
    The escape of an ensemble of particles from the Bunimovich stadium via a small hole has been studied numerically. The decay probability starts out exponentially but has an algebraic tail. The weight of the algebraic decay tends to zero for vanishing hole size. This behaviour is explained by the slow transport of the particles close to the marginally stable bouncing ball orbits. It is contrasted with the decay function of the corresponding quantum system.Comment: 16 pages, RevTex, 3 figures are available upon request from [email protected], to be published in Phys.Rev.

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    Grain boundary effects on magnetotransport in bi-epitaxial films of La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    The low field magnetotransport of La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO) films grown on SrTiO3_3 substrates has been investigated. A high qualtity LSMO film exhibits anisotropic magnetoresistance (AMR) and a peak in the magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films prepared using a seed layer of MgO and a buffer layer of CeO2_2 display a resistance dominated by grain boundaries. One film was prepared with seed and buffer layers intact, while a second sample was prepared as a 2D square array of grain boundaries. These films exhibit i) a low temperature tail in the low field magnetoresistance; ii) a magnetoconductance with a constant high field slope; and iii) a comparably large AMR effect. A model based on a two-step tunneling process, including spin-flip tunneling, is discussed and shown to be consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format (zdf1.jpg); the eps was huge. Accepted to Phys. Rev.

    Next-to-Leading Order Cross Sections for Tagged Reactions

    Get PDF
    We extend the phase space slicing method of Giele, Glover and Kosower for performing next-to-leading order jet cross section calculations in two important ways: we show how to include fragmentation functions and how to include massive particles. These extensions allow the application of this method to not just jet cross sections but also to cross sections in which a particular final state particle, including a DD or BB-meson, is tagged.Comment: 36 pages, Latex Small corrections to text. To appear in Phys. Rev.

    Melting of Charge/Orbital Ordered States in Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3: Temperature and Magnetic Field Dependent Optical Studies

    Full text link
    We investigated the temperature (T=T= 15 \sim 290 K) and the magnetic field (H=H= 0 \sim 17 T) dependent optical conductivity spectra of a charge/orbital ordered manganite, Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3. With variation of TT and HH, large spectral weight changes were observed up to 4.0 eV. These spectral weight changes could be explained using the polaron picture. Interestingly, our results suggested that some local ordered state might remain above the charge ordering temperature, and that the charge/orbital melted state at a high magnetic field (i.e. at H=H= 17 T and % T= 4.2 K) should be a three dimensional ferromagnetic metal. We also investigated the first order phase transition from the charge/orbital ordered state to ferromagnetic metallic state using the TT- and HH% -dependent dielectric constants ϵ1\epsilon_1. In the charge/orbital ordered insulating state, ϵ1\epsilon_1 was positive and dϵ1/dω0d\epsilon_1/d\omega \approx 0. With increasing TT and HH, ϵ1\epsilon_1 was increased up to the insulator-metal phase boundaries. And then, ϵ1\epsilon_1 abruptly changed into negative and dϵ1/dω>0d\epsilon_1/d\omega >0, which was consistent with typical responses of a metal. Through the analysis of ϵ1% \epsilon_1 using an effective medium approximation, we found that the melting of charge/orbital ordered states should occur through the percolation of ferromagnetic metal domains.Comment: submitted to Phys. Rev.

    Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis

    Full text link
    We investigate inclusive Standard Model Higgs boson pair production at lepton and hadron colliders for Higgs boson masses in the range 120 GeV < m_H < 200 GeV. For m_H < 140 GeV we find that hadron colliders have a very limited capability to determine the Higgs boson self-coupling, \lambda, due to an overwhelming background. We also find that, in this mass range, supersymmetric Higgs boson pairs may be observable at the LHC, but a measurement of the self coupling will not be possible. For m_H > 140 GeV we examine ZHH and HH nu bar-nu production at a future e+e- linear collider with center of mass energy in the range of sqrt{s}=0.5 - 1 TeV, and find that this is likely to be equally difficult. Combining our results with those of previous literature, which has demonstrated the capability of hadron and lepton machines to determine \lambda in either the high or the low mass regions, we establish a very strong complementarity of these machines.Comment: Revtex, 25 pages, 2 tables, 10 figure

    Determining the Higgs Boson Self Coupling at Hadron Colliders

    Get PDF
    Inclusive Standard Model Higgs boson pair production at hadron colliders has the capability to determine the Higgs boson self-coupling, lambda. We present a detailed analysis of the gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)(jj{l'}^\pm\nu) and gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)({l'}^\pm\nu {l''}^\mp\nu) (l, {l'}, {l''}=e, \mu) signal channels, and the relevant background processes, for the CERN Large Hadron Collider, and a future Very Large Hadron Collider operating at a center-of-mass energy of 200 TeV. We also derive quantitative sensitivity limits for lambda. We find that it should be possible at the LHC with design luminosity to establish that the Standard Model Higgs boson has a non-zero self-coupling and that lambda / lambda_{SM} can be restricted to a range of 0-3.8 at 95% confidence level (CL) if its mass is between 150 and 200 GeV. At a 200 TeV collider with an integrated luminosity of 300 fb^{-1}, lambda can be determined with an accuracy of 8 - 25% at 95% CL in the same mass range.Comment: 28 pages, Revtex3, 9 figures, 3 table
    corecore