88,783 research outputs found

    Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity

    Full text link
    Time-dependent Fr\"ohlich transformations can be used to derive an effective Hamiltonian for a class of quantum systems with time-dependent perturbations. We use such a transformation for a system with time-dependent atom-photon coupling induced by the classical motion of two atoms in an inhomogeneous electromagnetic field. We calculate the entanglement between the two atoms resulting from their motion through a cavity as a function of their initial position difference and velocity.Comment: 7 pages, 3 figure

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for

    Universality of the single-particle spectra of cuprate superconductors

    Full text link
    All the available data for the dispersion and linewidth of the single-particle spectra above the superconducting gap and the pseudogap in metallic cuprates for any doping has universal features. The linewidth is linear in energy below a scale ωc\omega_c and constant above. The cusp in the linewidth at ωc\omega_c mandates, due to causality, a "waterfall", i.e., a vertical feature in the dispersion. These features are predicted by a recent microscopic theory. We find that all data can be quantitatively fitted by the theory with a coupling constant λ0\lambda_0 and an upper cutoff at ωc\omega_c which vary by less than 50% among the different cuprates and for varying dopings. The microscopic theory also gives these values to within factors of O(2).Comment: 4 pages, 4 figures; accepted by Phys. Rev. Let

    Topological view on magnetic adatoms in graphene

    Full text link
    We study theoretically the physical properties of a magnetic impurity in graphene. Within the Anderson model for a very strong Coulomb interaction on the impurity, we start from the Slave-Boson method and introduce a topological picture consisting of a degree of a map and a winding number (WN) to analyze the phase shift and the occupation on the impurity. The occupation is linked to WN. For a generic normal metal we find a fractional WN. In contrast, the winding is accelerated by the relativistic dispersion of graphene at half-filling leading to an integer occupation. We show that the renormalization parameter that shifts the impurity level is insufficient to invert the sign of the energy level. Consequently, the state at half-filling is stable unless a gate voltage is tuned such that the Fermi level touches the edge of the broadened impurity level. Only in this case the zero field susceptibility is finite and shows a pronounced peak structure with the gate voltage.Comment: 9pages. 4 figure

    Dynamic Provable Data Possession Protocols with Public Verifiability and Data Privacy

    Full text link
    Cloud storage services have become accessible and used by everyone. Nevertheless, stored data are dependable on the behavior of the cloud servers, and losses and damages often occur. One solution is to regularly audit the cloud servers in order to check the integrity of the stored data. The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy presented in ACISP'15 is a straightforward design of such solution. However, this scheme is threatened by several attacks. In this paper, we carefully recall the definition of this scheme as well as explain how its security is dramatically menaced. Moreover, we proposed two new constructions for Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy based on the scheme presented in ACISP'15, one using Index Hash Tables and one based on Merkle Hash Trees. We show that the two schemes are secure and privacy-preserving in the random oracle model.Comment: ISPEC 201

    One-dimensional Ising model built on small-world networks: competing dynamics

    Full text link
    In this paper, we offer a competing dynamic analysis of the one-dimensional Ising model built on the small-world network (SWN). Adding-type SWNs are investigated in detail using a simplified Hamiltonian of mean-field nature, and the result of rewiring-type is given because of the similarities of these two typical networks. We study the dynamical processes with competing Glauber mechanism and Kawasaki mechanism. The Glauber-type single-spin transition mechanism with probability p simulates the contact of the system with a heat bath and the Kawasaki-type dynamics with probability 1-p simulates an external energy flux. By studying the phase diagram obtained in the present work, we can realize some dynamical properties influenced by the small-world effect.Comment: 5 pages, one figure, accepted for publication in Physical Review

    Colossal negative magnetoresistance in dilute fluorinated graphene

    Get PDF
    Adatoms offer an effective route to modify and engineer the properties of graphene. In this work, we create dilute fluorinated graphene using a clean, controlled and reversible approach. At low carrier densities, the system is strongly localized and exhibits an unexpected, colossal negative magnetoresistance. The zero-field resistance is reduced by a factor of 40 at the highest field of 9 T and shows no sign of saturation. Unusual "staircase" field dependence is observed below 5 K. The magnetoresistance is highly anisotropic. We discuss possible origins, considering quantum interference effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure
    corecore