40 research outputs found

    Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli

    Get PDF
    Now that many genomes have been sequenced and the products of newly identified genes have been annotated, the next goal is to engineer the desired phenotypes in organisms of interest. For the phenotypic engineering of microorganisms, we have developed novel artificial transcription factors (ATFs) capable of reprogramming innate gene expression circuits in Escherichia coli. These ATFs are composed of zinc finger (ZF) DNA-binding proteins, with distinct specificities, fused to an E. coli cyclic AMP receptor protein (CRP). By randomly assembling 40 different types of ZFs, we have constructed more than 6.4 × 104 ATFs that consist of 3 ZF DNA-binding domains and a CRP effector domain. Using these ATFs, we induced various phenotypic changes in E. coli and selected for industrially important traits, such as resistance to heat shock, osmotic pressure and cold shock. Genes associated with the heat-shock resistance phenotype were then characterized. These results and the general applicability of this platform clearly indicate that novel ATFs are powerful tools for the phenotypic engineering of microorganisms and can facilitate microbial functional genomic studies

    Insula-specific responses induced by dental pain: a proton magnetic resonance spectroscopy study

    Full text link
    OBJECTIVES: To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. METHODS: Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. RESULTS: Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. CONCLUSION: The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed

    Ethanol-Mediated Regulation of Cytochrome P450 2A6 Expression in Monocytes: Role of Oxidative Stress-Mediated PKC/MEK/Nrf2 Pathway

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus) in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (∼150%) and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide) or an antioxidant (vitamin C). The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK) (U0126) completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism. Thus, this study has clinical relevance because of the high incidence of alcohol use among smokers, especially in HIV-infected individuals

    In vivo phosphorus 31 magnetic resonance spectroscopy of human uveal melanomas and other intraocular tumors

    No full text
    We studied the feasibility of using the surface coil probe technique for the noninvasive in vivo study of ocular tumors by phosphorus 31 magnetic resonance spectroscopy. The characteristic organophosphate metabolites of suspected uveal melanomas before proton beam irradiation were determined qualitatively by phosphorus 31 magnetic resonance spectroscopy in vivo using a three-turn surface coil. Spectra of choroidal hemangioma, osteoma, and metastasis were also obtained in vivo and compared with those of uveal melanomas. Analysis of spectra performed at 1.5 T showed significant peaks of phosphomonoesters, inorganic phosphate, phosphodiesters, phosphocreatine, and adenosine 5'-triphosphates. The unusually high concentration of phosphodiesters may be considered as a marker for uveal melanomas and other choroidal tumors. By analyzing the ratio of phosphocreatine to phosphodiesters spectral area values, we interpreted qualitatively spectra of intraocular tumors to differentiate malignant tumors from benign lesions. Nevertheless, the main limitation of interpreting the spectra was their contamination by signals from surrounding tissues

    Quantitation of the Minor Tobacco Alkaloids Nornicotine, Anatabine, and Anabasine in Smokers’ Urine by High Throughput Liquid Chromatography–Mass Spectrometry

    No full text
    Nicotine is the most abundant alkaloid in tobacco accounting for 95% of the alkaloid content. There are also several minor tobacco alkaloids; among these are nornicotine, anatabine, and anabasine. We developed and applied a 96 well plate-based capillary LC-tandem mass spectrometry method for the analysis of nornicotine, anatabine, and anabasine in urine. The method was validated with regard to accuracy and precision. Anabasine was quantifiable to low levels with a limit of quantitation (LOQ) of 0.2 ng/mL even when nicotine, which is isobaric, is present at concentrations >2500-fold higher than anabasine. This attribute of the method is important since anatabine and anabasine in urine have been proposed as biomarkers of tobacco use for individuals using nicotine replacement therapies. In the present study, we analyzed the three minor tobacco alkaloids in urine from 827 smokers with a wide range of tobacco exposures. Nornicotine (LOQ 0.6 ng/mL) was detected in all samples, and anatabine (LOQ, 0.15 ng/mL) and anabasine were detected in 97.7% of the samples. The median urinary concentrations of nornicotine, anatabine, and anabasine were 98.9, 4.02, and 5.53 ng/mL. Total nicotine equivalents (TNE) were well correlated with anatabine (<i>r</i><sup>2</sup> = 0.714) and anabasine (<i>r</i><sup>2</sup> = 0.760). TNE was most highly correlated with nornicotine, which is also a metabolite of nicotine. Urine samples from a subset of subjects (<i>n</i> = 110) were analyzed for the presence of glucuronide conjugates by quantifying any increase in anatabine and anabasine concentrations after β-glucuronidase treatment. The median ratio of the glucuronidated to free anatabine was 0.74 (range, 0.1 to 10.9), and the median ratio of glucuronidated to free anabasine was 0.3 (range, 0.1 to 2.9). To our knowledge, this is the largest population of smokers for whom the urinary concentrations of these three tobacco alkaloids has been reported
    corecore