579 research outputs found

    QCD corrections to longitudinal spin asymmetries in W±W^\pm-boson production at RHIC

    Full text link
    The polarized antiquark distributions in the proton can be measured by studying spin asymmetries in vector boson production in longitudinally polarized proton-proton collisions. The STAR and PHENIX experiments at BNL RHIC have reported first observations of single spin asymmetries in W±W^\pm-production most recently. We compute the QCD corrections to single and double spin asymmetries, taking account of the leptonic decay of the W±W^\pm boson and of restrictions on the kinematical acceptance of the detectors. The QCD corrections have only a small impact on the asymmetries, such that a reliable extraction of the polarized antiquark distributions can be envisaged once more precise measurements are made.Comment: LaTeX, 12 pages, typos corrected, references adde

    Coulomb distortion of relativistic electrons in the nuclear electrostatic field

    Get PDF
    Abstract.: Continuum states of the Dirac equation are calculated numerically for the electrostatic field generated by the charge distribution of an atomic nucleus. The behavior of the wave functions of an incoming electron with given asymptotic momentum in the nuclear region is discussed in detail and the results are compared to different approximations used in the data analysis for quasielastic electron scattering off medium and highly charged nuclei. It is found that most of the approximations provide an accurate description of the electron wave functions in the range of electron energies above 100 MeV typically used in experiments for quasielastic electron scattering off nuclei only near the center of the nucleus. It is therefore necessary that the properties of exact wave functions are investigated in detail in order to obtain reliable results in the data analysis of quasielastic (e, e'p) knockout reactions or inclusive quasielastic (e, e') scattering. Detailed arguments are given that the effective momentum approximation with a fitted potential parameter is a viable method for a simplified treatment of Coulomb corrections for certain kinematical regions used in experiments. Numerical calculations performed within the framework of the single-particle shell model for nucleons lead to the conclusion that our results are incompatible with calculations performed about a decade ago, where exact electron wave functions were used in order to calculate Coulomb corrections in distorted-wave Born approximation. A discussion of the exact solutions of the Dirac equation for free electrons in a Coulomb field generated by a point-like charge and some details relevant for the numerical calculations are given in the appendi

    Vascular dysfunction in children conceived by assisted reproductive technologies: underlying mechanisms and future implications.

    Get PDF
    Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health

    Fear of the unknown: local knowledge and perceptions of the Eurasian lynx Lynx lynx in western Macedonia

    Get PDF
    The remnant population of Balkan lynx Lynx lynx martinoi is small, isolated and highly threatened. Since 2006 a conservation project has surveyed its status and promoted its recovery in Albania and Macedonia. Eurasian lynx are often associated with conflicts of an economic or social nature, and their conservation requires a focus on the people sharing the landscape with the species. In this study we adopt methods and conceptual frameworks from anthropology to explore the local knowledge and perceptions of lynx among rural hunters and livestock breeders in the western mountains of the Republic of Macedonia in south-east Europe. The main finding was that local people rarely saw or interacted with lynx. As the level of interactions with this species is very low, the lynx doesn't appear to be a species associated with conflicts in Macedonia. There was also a general lack of both scientific and local knowledge, which has led to somewhat negative attitudes, mainly based on myths and rumours. Poaching of lynx and their prey seem to be the main barriers to lynx conservatio

    Hudson '70 : gravity observations 62.9S̊ - 57.5N̊ along 150W̊

    Get PDF
    To provide geoidal topography over the world oceans, a radar altimeter carried by earth satellite is planned. Ground truth calibration will be provided by a grid comprised of the equatorial belt and meridional traverses along the 30°W and 150°W meridians. Ground truth topography is derived from gravity values measured along these traverses. This report presents the free air gravity values and the computed free air anomalies obtained from 62.9°S to 57.5°N along the 150°W meridian.Supported by the Office of Naval Research under Contract N00014-66-C0241; NR 083-004

    The evolving therapeutic landscape of trastuzumab-drug conjugates: Future perspectives beyond HER2-positive breast cancer

    Get PDF
    A novel class of drugs, antibody-drug conjugates (ADCs), are now rapidly emerging as highly effective treatments for solid tumours. ADCs conjugate conventional chemotherapeutics with highly selective targeted monoclonal antibodies. Anti-HER2 therapies selectively target cancer cells expressing human epidermal growth factor receptor 2 (HER2), among them trastuzumab has been the first HER2-targeting monoclonal antibody to achieve successful results that made it the backbone of anti-HER2 therapies. Trastuzumab drug conjugates (T-DCs), use trastuzumab as a selective antibody to lead cytotoxic drugs inside cancer cells. Trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-Dxd) are the two approved T-DCs. T-Dxd along with other five T-DCs represents “second generation ADCs” that has been firstly tested in HER2 positive breast cancer (BC) and then in HER2-low BC and other cancers showing promising results thanks to extraordinary and innovative pharmacokinetic and pharmacodynamic characteristics. The evidence generated so far are establishing them as a completely new class of agents effective in solid cancer treatments but also warrants physicians against unconventional toxicity profiles. The role of T-DCs in HER2-positive BC has been largely reviewed, while in this review, we provided for the first time in literature an overview of trastuzumab drug conjugates (T-DCs) approved and/or in clinical development with a specific focus on their efficacy and safety profile in HER2-low BC and other solid tumours different from BC. We started by analysing T-DCs biological characteristics that underly the differences in T-DCs pharmacodynamics and safety profile, then presented the main evidence on the activity and efficacy of these emerging T-DCs in HER2-low BC and other HER2 overexpressing and/or mutated solid tumours and lastly, we provided an overview of the complex and still evolving scenario in which these compounds should be allocated. A specific focus on possible combination strategies with other drugs such as immunotherapy, chemotherapy and target therapy, to increase T-DCs activity and eventually overcome future upcoming resistance mechanisms, are here also critically reviewed

    Regularization in quantum field theory from the causal point of view

    Full text link
    The causal approach to perturbative quantum field theory is presented in detail, which goes back to a seminal work by Henri Epstein and Vladimir Jurko Glaser in 1973. Causal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. Epstein and Glaser solved this problem for a special class of distributions, the time-ordered products, that fulfill a causality condition, which itself is a basic requirement in axiomatic quantum field theory. In their original work, Epstein and Glaser studied only theories involving scalar particles. In this review, the extension of the method to theories with higher spin, including gravity, is presented. Furthermore, specific examples are presented in order to highlight the technical differences between the causal method and other regularization methods, like, e.g. dimensional regularization.Comment: 75 pages, 8 figures, style file included, some comments and references adde

    Machine learning outperforms clinical experts in classification of hip fractures

    Get PDF
    Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%
    corecore