39,152 research outputs found
Recommended from our members
Testing based on the RELAY model of error detection
RELAY, a model for error detection, defines revealing conditions that guarantee that a fault originates an error during execution and that the error transfers through computations and data flow until it is revealed. This model of error detection provides a fault-based criterion for test data selection. The model is applied by choosing a fault classification, instantiating the conditions for the classes of faults, and applying them to the program being tested. Such an application guarantees the detection of errors caused by any fault of the chosen classes. As a formal mode of error detection, RELAY provides the basis for an automated testing tool. This paper presents the concepts behind RELAY, describes why it is better than other fault-based testing criteria, and discusses how RELAY could be used as the foundation for a testing system
Recommended from our members
An analysis of test data selection criteria using the RELAY model of fault detection
RELAY is a model of faults and failures that defines failure conditions, which describe test data for which execution will guarantee that a fault originates erroneous behavior that also transfers through computations and information flow until a failure is revealed. This model of fault detection provides a framework within which other testing criteria's capabilities can be evaluated. In this paper, we analyze three test data selection criteria that attempt to detect faults in six fault classes. This analysis shows that none of these criteria is capable of guaranteeing detection for these fault classes and points out two major weaknesses of these criteria. The first weakness is that the criteria do not consider the potential unsatisfiability of their rules; each criterion includes rules that are sufficient to cause potential failures for some fault classes, yet when such rules are unsatisfiable, many faults may remain undetected. Their second weakness is failure to integrate their proposed rules; although a criterion may cause a subexpression to take on an erroneous value, there is no effort made to guarantee that the intermediate values cause observable, erroneous behavior. This paper shows how the RELAY model overcomes these weaknesses
Asymptotic solution of a model for bilayer organic diodes and solar cells
The current voltage characteristics of an organic semiconductor diode made by placing together two materials with dissimilar electron affinities and ionisation potentials is analysed using asymptotic methods. An intricate boundary layer structure is examined. We find that there are three regimes for the total current passing through the diode. For reverse bias and moderate forward bias the dependency of the voltage on the current is similar to the behaviour of conventional inorganic semiconductor diodes predicted by the Shockley equation and are governed by recombination at the interface of the materials. There is then a narrow range of currents where the behaviour undergoes a transition. Finally for large forward bias the behaviour is different with the current being linear in voltage and is primarily controlled by drift of charges in the organic layers. The size of the interfacial recombination rate is critical in determining the small range of current where there is rapid transition between the two main regimes. The extension of the theory to organic solar cells is discussed and the analogous current voltage curves derived in the regime of interest
Comparisons among a new soil index and other two- and four-dimensional vegetation indices
The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation
Joint perception: gaze and beliefs about social context
The way that we look at images is influenced by social context. Previously we demonstrated this phenomenon of joint perception. If lone participants believed that an unseen other person was also looking at the images they saw, it shifted the balance of their gaze between negative and positive images. The direction of this shift depended upon whether participants thought that later they would be compared against the other person or would be collaborating with them. Here we examined whether the joint perception is caused by beliefs about shared experience (looking at the same images) or beliefs about joint action (being engaged in the same task with the images). We place our results in the context of the emerging field of joint action, and discuss their connection to notions of group emotion and situated cognition. Such findings reveal the persuasive and subtle effect of social context upon cognitive and perceptual processes
Estimating total standing herbaceous biomass production with LANDSAT MSS digital data
Rangeland biomass data were correlated with spectral vegetation indices, derived from LANDSAT MSS data. LANDSAT data from five range and three other land use sites in Willacv and Cameron Counties were collected on October 17 and December 10, 1975, and on July 31 and September 23, 1976. The overall linear correlation of total standing herbaceous biomass with the LANDSAT derived perpendicular vegetation index was highly significant (r = 0.90**) for these four dates. The standard error of estimate was 722 kg/ha. Biomass data were recorded for two of these range sites for 8 months (March through October) during the 1976 growing season. Standing green biomass accounted for most of the increase in herbage, starting in June and ending about September and October. These results indicate that satellite data may be useful for the estimation of total standing herbaceous biomass production that could aid range managers in assessing range condition and animal carrying capacities of large and inaccessible range holdings
Sunward-propagating Alfv\'enic fluctuations observed in the heliosphere
The mixture/interaction of anti-sunward-propagating Alfv\'enic fluctuations
(AFs) and sunward-propagating Alfv\'enic fluctuations (SAFs) is believed to
result in the decrease of the Alfv\'enicity of solar wind fluctuations with
increasing heliocentric distance. However, SAFs are rarely observed at 1 au and
solar wind AFs are found to be generally outward. Using the measurements from
Voyager 2 and Wind, we perform a statistical survey of SAFs in the heliosphere
inside 6 au. We first report two SAF events observed by Voyager 2. One is in
the anti-sunward magnetic sector with a strong positive correlation between the
fluctuations of magnetic field and solar wind velocity. The other one is in the
sunward magnetic sector with a strong negative magnetic field-velocity
correlation. Statistically, the percentage of SAFs increases gradually with
heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These
results provide new clues for understanding the generation mechanism of SAFs
- …