341 research outputs found

    Out-of-equilibrium dynamical fluctuations in glassy systems

    Full text link
    In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models with short-ranged quenched interactions. The key ingredient for such scaling properties is shown to be the development of a critical-like dynamical correlation length, and not other microscopic details. This robust data collapse may be described in terms of a time-evolving Gumbel-like distribution. We develop a theory to describe both the form and evolution of these distributions based on a effective sigma-model approach.Comment: 20 pages, RevTex, 9 figure

    Green's Function Approach to the Edge Spectral Density

    Full text link
    It is shown that the conventional many-body techniques to calculate the Green's functions can be applied to the wide, compressible edge of a quantum Hall bar. The only ansatz we need is the existence of stable density modes that yields a simple equation of motion of the density operators. We derive the spectral density at a finite temperature and show how the tunneling characteristics of a sharp edge can be deduced as a limiting case.Comment: Revised and Enlarged. Submitted to Phys. Rev.

    Out-of-equilibrium relaxation of the Edwards-Wilkinson elastic line

    Full text link
    We study the non-equilibrium relaxation of an elastic line described by the Edwards-Wilkinson equation. Although this model is the simplest representation of interface dynamics, we highlight that many (not though all) important aspects of the non-equilibrium relaxation of elastic manifolds are already present in such quadratic and clean systems. We analyze in detail the aging behaviour of several two-times averaged and fluctuating observables taking into account finite-size effects and the crossover to the stationary and equilibrium regimes. We start by investigating the structure factor and extracting from its decay a growing correlation length. We present the full two-times and size dependence of the interface roughness and we generalize the Family-Vicsek scaling form to non-equilibrium situations. We compute the incoherent cattering function and we compare it to the one measured in other glassy systems. We analyse the response functions, the violation of the fluctuation-dissipation theorem in the aging regime, and its crossover to the equilibrium relation in the stationary regime. Finally, we study the out-of-equilibrium fluctuations of the previously studied two-times functions and we characterize the scaling properties of their probability distribution functions. Our results allow us to obtain new insights into other glassy problems such as the aging behavior in colloidal glasses and vortex glasses.Comment: 33 pages, 16 fig

    Magnetic Field Dependence of the Level Spacing of a Small Electron Droplet

    Full text link
    The temperature dependence of conductance resonances is used to measure the evolution with the magnetic field of the average level spacing Δϵ\Delta\epsilon of a droplet containing 30\sim 30 electrons created by lateral confinement of a two-dimensional electron gas in GaAs. Δϵ\Delta\epsilon becomes very small (<30μ< 30\mueV) near two critical magnetic fields at which the symmetry of the droplet changes and these decreases of Δϵ\Delta\epsilon are predicted by Hartree-Fock (HF) for charge excitations. Between the two critical fields, however, the largest measured Δϵ=100μ\Delta\epsilon= 100\mueV is an order of magnitude smaller than predicted by HF but comparable to the Zeeman splitting at this field, which suggests that the spin degrees of freedom are important. PACS: 73.20.Dx, 73.20.MfComment: 11 pages of text in RevTeX, 4 figures in Postscript (files in the form of uuencoded compressed tar file

    Fluctuations of two-time quantities and time-reparametrization invariance in spin-glasses

    Full text link
    This article is a contribution to the understanding of fluctuations in the out of equilibrium dynamics of glassy systems. By extending theoretical ideas based on the assumption that time-reparametrization invariance develops asymptotically we deduce the scaling properties of diverse high-order correlation functions. We examine these predictions with numerical tests in a standard glassy model, the 3d Edwards-Anderson spin-glass, and in a system where time-reparametrization invariance is not expected to hold, the 2d ferromagnetic Ising model, both at low temperatures. Our results enlighten a qualitative difference between the fluctuation properties of the two models and show that scaling properties conform to the time-reparametrization invariance scenario in the former but not in the latter.Comment: 17 pages, 5 figure

    Anomalous Quantum Diffusion at the Superfluid-Insulator Transition

    Full text link
    We consider the problem of the superconductor-insulator transition in the presence of disorder, assuming that the fermionic degrees of freedom can be ignored so that the problem reduces to one of Cooper pair localization. Weak disorder drives the critical behavior away from the pure critical point, initially towards a diffusive fixed point. We consider the effects of Coulomb interactions and quantum interference at this diffusive fixed point. Coulomb interactions enhance the conductivity, in contrast to the situation for fermions, essentially because the exchange interaction is opposite in sign. The interaction-driven enhancement of the conductivity is larger than the weak-localization suppression, so the system scales to a perfect conductor. Thus, it is a consistent possibility for the critical resistivity at the superconductor-insulator transition to be zero, but this value is only approached logarithmically. We determine the values of the critical exponents η,z,ν\eta,z,\nu and comment on possible implications for the interpretation of experiments

    Non-equilibrium tunneling into general quantum Hall edge states

    Full text link
    In this paper we formulate the theory of tunneling into general Abelian fractional quantum Hall edge states. In contrast to the simple Laughlin states, a number of charge transfer processes must be accounted for. Nonetheless, it is possible to identify a unique value corresponding to dissipationless transport as the asymptotic large-VV conductance through a tunneling junction, and find fixed points (CFT boundary conditions) corresponding to this value. The symmetries of a given edge tunneling problem determine the appropriate boundary condition, and the boundary condition determines the strong-coupling operator content and current noise.Comment: 6 pages, 3 figures; published versio
    corecore