1,422 research outputs found
The 25 October 2010 Mentawai tsunami earthquake (M_w 7.8) and the tsunami hazard presented by shallow megathrust ruptures
The 25 October 2010 Mentawai, Indonesia earthquake (M_w 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off-shore of Sumatra, generating 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite-fault source rupture characteristics indicate ∼90 s rupture duration with a low rupture velocity of ∼1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∼100 km long source region. The seismic moment-scaled energy release is 1.4 × 10^(−6), lower than 2.4 × 10^(−6) found for the 17 July 2006 Java tsunami earthquake (M_w 7.8). The Mentawai event ruptured up-dip of the slip region of the 12 September 2007 Kepulauan earthquake (M_w 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up-dip of great underthrusting events in Indonesia and elsewhere
Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming
This paper considers an optimum nonuniform FIR transmultiplexer design problem subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to this nonuniform transmultiplexer design problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then a solution exists. Since the problem is formulated as a convex problem, if a solution exists, then the solution obtained is unique and the local solution is a global minimum
Path Planning for Underactuated Dubins Micro-robots Using Switching Control
In this paper, we develop an optimal path planning strategy for under-actuated Dubins micro-robots. Such robots are non-holonomic robots constrained to move along circular paths of fixed curvature clockwise or counter-clockwise. Our objective is to investigate the coverage and optimal path problems, as well as multi-robot cooperation, for a switching control scheme. Our methods are based on elementary geometry and optimal control techniques. The results in this paper show that the trajectories of micro-robots can cover the entire two-dimensional plane, and that the proposed switching control scheme allows multiple robots to cooperate. In addition, we deduce the minimum-time path under the switching control scheme by converting the robot model into the traditional Dubins vehicle model
Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit
Experiments reveal that a confined electron system with two equally-populated
layers at zero magnetic field can spontaneously break this symmetry through an
interlayer charge transfer near the magnetic quantum limit. New fractional
quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3
+ 2/5) stabilize as signatures that the system deforms itself, at substantial
electrostatic energy cost, in order to gain crucial correlation energy by
"locking in" separate incompressible liquid phases at unequal fillings in the
two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at
http://www.ee.princeton.edu/~hari/papers.htm
Quantum universal detectors
We address the problem of estimating the expectation value of an
arbitrary operator O via a universal measuring apparatus that is independent of
O, and for which the expectation values for different operators are obtained by
changing only the data-processing. The ``universal detector'' performs a joint
measurement on the system and on a suitably prepared ancilla. We characterize
such universal detectors, and show how they can be obtained either via Bell
measurements or via local measurements and classical communication between
system and ancilla.Comment: 4 pages, no figure
Wigner crystallization and metal-insulator transition of two-dimensional holes in GaAs/AlGaAs at B=0
We report the transport properties of a low disorder two-dimensional hole
system (2DHS) in the GaAs/AlGaAs heterostructure, which has an unprecedentedly
high peak mobility of , with hole density of in the temperature range of
. From their T, p, and electric field dependences, we find that
the metal-insulator transition in zero magnetic field in this exceptionally
clean 2DHS occurs at , which is in good agreement with the
critical for Wigner crystallization , predicted by
Tanatar and Ceperley for an ideally clean 2D system.Comment: 4 pages, 4 Postscript figure
In-Vivo Evaluation of Microultrasound and Thermometric Capsule Endoscopes
Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a non-invasive manner. Available since 2001, current capsule endoscopes are limited to viewing the mucosal surface only due to their reliance on optical imaging. To overcome this limitation with submucosal imaging, work is under way to implement microultrasound (μUS) imaging in the same form as VCE devices. This paper describes two prototype capsules, termed Sonocap and Thermocap, which were developed respectively to assess the quality of μUS imaging and the maximum power consumption that can be tolerated for such a system. The capsules were tested in vivo in the oesophagus and small bowel of porcine models. Results are presented in the form of μUS B-scans and safe temperature readings observed up to 100 mW in both biological regions. These results demonstrate that acoustic coupling and μUS imaging can be achieved in vivo in the lumen of the bowel and the maximum power consumption that is possible for miniature μUS systems
- …