4,299 research outputs found
Seeding of supercooled polyethylene with extended chain crystals
Seeding of supercooled polyethylene with extended chain crystal
Error-resistant Single Qubit Gates with Trapped Ions
Coherent operations constitutive for the implementation of single and
multi-qubit quantum gates with trapped ions are demonstrated that are robust
against variations in experimental parameters and intrinsically indeterministic
system parameters. In particular, pulses developed using optimal control theory
are demonstrated for the first time with trapped ions. Their performance as a
function of error parameters is systematically investigated and compared to
composite pulses.Comment: 5 pages 5 figure
Enhancement of laser cooling by the use of magnetic gradients
We present a laser cooling scheme for trapped ions and atoms using a
combination of laser couplings and a magnetic gradient field. In a
Schrieffer-Wolff transformed picture, this setup cancels the carrier and blue
sideband terms completely resulting in an improved cooling behaviour compared
to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the
vibrational ground state. A condition for optimal cooling rates is presented
and the cooling behaviour for different Lamb-Dicke parameters and spontaneous
decay rates is discussed. Cooling rates of one order of magnitude less than the
trapping frequency are achieved using the new cooling method. Furthermore the
scheme turns out to be robust under deviations from the optimal parameters and
moreover provides good cooling rates also in the multi particle case.Comment: 14 pages, 8 figure
Trapped ion chain as a neural network
We demonstrate the possibility of realizing a neural network in a chain of
trapped ions with induced long range interactions. Such models permit to store
information distributed over the whole system. The storage capacity of such
network, which depends on the phonon spectrum of the system, can be controlled
by changing the external trapping potential and/or by applying longitudinal
local magnetic fields. The system properties suggest the possibility of
implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure
Franck-Condon Physics in A Single Trapped Ion
We propose how to explore the Franck-Condon (FC) physics via a single ion
confined in a spin-dependent potential, formed by the combination of a Paul
trap and a magnetic field gradient. The correlation between electronic and
vibrational degrees of freedom, called as electron-vibron coupling, is induced
by a nonzero gradient. For a sufficiently strong electron-vibron coupling, the
FC blockade of low-lying vibronic transitions takes place. We analyze the
feasibility of observing the FC physics in a single trapped ion, and
demonstrate various potential applications of the ionic FC physics in quantum
state engineering and quantum information processing.Comment: 7 pages, 5 figure
The factorization of large composite numbers on the MPP
The continued fraction method for factoring large integers (CFRAC) was an ideal algorithm to be implemented on a massively parallel computer such as the Massively Parallel Processor (MPP). After much effort, the first 60 digit number was factored on the MPP using about 6 1/2 hours of array time. Although this result added about 10 digits to the size number that could be factored using CFRAC on a serial machine, it was already badly beaten by the implementation of Davis and Holdridge on the CRAY-1 using the quadratic sieve, an algorithm which is clearly superior to CFRAC for large numbers. An algorithm is illustrated which is ideally suited to the single instruction multiple data (SIMD) massively parallel architecture and some of the modifications which were needed in order to make the parallel implementation effective and efficient are described
- …
