3,681 research outputs found

    Narrow Technihadron Production at the First Muon Collider

    Get PDF
    In modern technicolor models, there exist very narrow spin-zero and spin-one neutral technihadrons---piT0pi^0_T, rhoT0rho^0_T and omegaTomega_T---with masses of a few 100 GeV. The large coupling of πT0\pi^0_T to ÎŒ+Ό−\mu^+\mu^-, the direct coupling of rhoT0rho^0_T and omegaTomega_T to the photon and Z0Z^0, and the superb energy resolution of the First Muon Collider may make it possible to resolve these technihadrons and produce them at extraordinarily large rates.Comment: 11 pages, latex, including 2 postscript figure

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    Summary of the Very Large Hadron Collider Physics and Detector Workshop

    Get PDF
    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV

    Well conditioned spherical designs for integration and interpolation on the two-sphere

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Regularized least squares approximations on the sphere using spherical designs

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Weakly-Coupled Higgs Bosons and Precision Electroweak Physics

    Get PDF
    We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of the signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results

    Physics Beyond the Standard Model

    Full text link
    I briefly summarize the prospects for extending our understanding of physics beyond the standard model within the next five years.Comment: 9 pages, 2 figures, LaTeX. Presented at the 1999 UK Phenomenology Workshop, Durham, September 1999. To be published in Journal of Physics
    • 

    corecore