14 research outputs found

    Antenatal detection of large-for-gestational-age fetuses following implementation of the Growth Assessment Protocol: secondary analysis of a randomised control trial

    Get PDF
    OBJECTIVE: To determine whether the Growth Assessment Protocol (GAP) affects the antenatal detection of large for gestational age (LGA) or maternal and perinatal outcomes amongst LGA babies. DESIGN: Secondary analysis of a pragmatic open randomised cluster control trial comparing the GAP with standard care. SETTING: Eleven UK maternity units. POPULATION: Pregnant women and their LGA babies born at ≥36+0  weeks of gestation. METHODS: Clusters were randomly allocated to GAP implementation or standard care. Data were collected from electronic patient records. Trial arms were compared using summary statistics, with unadjusted and adjusted (two-stage cluster summary approach) differences. MAIN OUTCOME MEASURES: Rate of detection of LGA (estimated fetal weight on ultrasound scan above the 90th centile after 34+0  weeks of gestation, defined by either population or customised growth charts), maternal and perinatal outcomes (e.g. mode of birth, postpartum haemorrhage, severe perineal tears, birthweight and gestational age, neonatal unit admission, perinatal mortality, and neonatal morbidity and mortality). RESULTS: A total of 506 LGA babies were exposed to GAP and 618 babies received standard care. There were no significant differences in the rate of LGA detection (GAP 38.0% vs standard care 48.0%; adjusted effect size -4.9%; 95% CI -20.5, 10.7; p = 0.54), nor in any of the maternal or perinatal outcomes. CONCLUSIONS: The use of GAP did not change the rate of antenatal ultrasound detection of LGA when compared with standard care

    Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis

    Get PDF
    Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis

    Evaluation of the Growth Assessment Protocol (GAP) for antenatal detection of small for gestational age: The DESiGN cluster randomised trial.

    Get PDF
    BACKGROUND: Antenatal detection and management of small for gestational age (SGA) is a strategy to reduce stillbirth. Large observational studies provide conflicting results on the effect of the Growth Assessment Protocol (GAP) in relation to detection of SGA and reduction of stillbirth; to the best of our knowledge, there are no reported randomised control trials. Our aim was to determine if GAP improves antenatal detection of SGA compared to standard care. METHODS AND FINDINGS: This was a pragmatic, superiority, 2-arm, parallel group, open, cluster randomised control trial. Maternity units in England were eligible to participate in the study, except if they had already implemented GAP. All women who gave birth in participating clusters (maternity units) during the year prior to randomisation and during the trial (November 2016 to February 2019) were included. Multiple pregnancies, fetal abnormalities or births before 24+1 weeks were excluded. Clusters were randomised to immediate implementation of GAP, an antenatal care package aimed at improving detection of SGA as a means to reduce the rate of stillbirth, or to standard care. Randomisation by random permutation was stratified by time of study inclusion and cluster size. Data were obtained from hospital electronic records for 12 months prerandomisation, the washout period (interval between randomisation and data collection of outcomes), and the outcome period (last 6 months of the study). The primary outcome was ultrasound detection of SGA (estimated fetal weight <10th centile using customised centiles (intervention) or Hadlock centiles (standard care)) confirmed at birth (birthweight <10th centile by both customised and population centiles). Secondary outcomes were maternal and neonatal outcomes, including induction of labour, gestational age at delivery, mode of birth, neonatal morbidity, and stillbirth/perinatal mortality. A 2-stage cluster-summary statistical approach calculated the absolute difference (intervention minus standard care arm) adjusted using the prerandomisation estimate, maternal age, ethnicity, parity, and randomisation strata. Intervention arm clusters that made no attempt to implement GAP were excluded in modified intention to treat (mITT) analysis; full ITT was also reported. Process evaluation assessed implementation fidelity, reach, dose, acceptability, and feasibility. Seven clusters were randomised to GAP and 6 to standard care. Following exclusions, there were 11,096 births exposed to the intervention (5 clusters) and 13,810 exposed to standard care (6 clusters) during the outcome period (mITT analysis). Age, height, and weight were broadly similar between arms, but there were fewer women: of white ethnicity (56.2% versus 62.7%), and in the least deprived quintile of the Index of Multiple Deprivation (7.5% versus 16.5%) in the intervention arm during the outcome period. Antenatal detection of SGA was 25.9% in the intervention and 27.7% in the standard care arm (adjusted difference 2.2%, 95% confidence interval (CI) -6.4% to 10.7%; p = 0.62). Findings were consistent in full ITT analysis. Fidelity and dose of GAP implementation were variable, while a high proportion (88.7%) of women were reached. Use of routinely collected data is both a strength (cost-efficient) and a limitation (occurrence of missing data); the modest number of clusters limits our ability to study small effect sizes. CONCLUSIONS: In this study, we observed no effect of GAP on antenatal detection of SGA compared to standard care. Given variable implementation observed, future studies should incorporate standardised implementation outcomes such as those reported here to determine generalisability of our findings. TRIAL REGISTRATION: This trial is registered with the ISRCTN registry, ISRCTN67698474
    corecore