9,742 research outputs found

    Finally, results from Gravity Probe-B

    Full text link
    Nearly fifty years after its inception, the Gravity Probe B satellite mission delivers the first measurements of how a spinning gyroscope precesses in the gravitational warping of spacetime.Comment: A Viewpoint article, published in Physics 4, 43 (2011), available at http://physics.aps.org/articles/v4/43 Submitted to the arXiv by permission of the American Physical Societ

    Constraining Lorentz-violating, Modified Dispersion Relations with Gravitational Waves

    Full text link
    Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their impact on the propagation of gravitational waves. A modified dispersion relation forces different wavelengths of the gravitational wave train to travel at slightly different velocities, leading to a modified phase evolution observed at a gravitational-wave detector. We show how such corrections map to the waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are tightest for dispersion relations that scale with small power of the graviton's momentum and deteriorate for a steeper scaling.Comment: 11 pages, 3 figures, 2 tables: title changed slightly, published versio

    A Critique of the Model Penal Code Sentencing Proposals

    Get PDF

    Exploring the bulk of tidal charged micro-black holes

    Full text link
    We study the bulk corresponding to tidal charged brane-world black holes. We employ a propagating algorithm which makes use of the three-dimensional multipole expansion and analytically yields the metric elements as functions of the five-dimensional coordinates and of the ADM mass, tidal charge and brane tension. Since the projected brane equations cannot determine how the charge depends on the mass, our main purpose is to select the combinations of these parameters for which black holes of microscopic size possess a regular bulk. Our results could in particular be relevant for a better understanding of TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos corrected, no change in conclusion

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the strong equivalence principle to second post-Newtonian order

    Full text link
    Using post-Newtonian equations of motion for fluid bodies valid to the second post-Newtonian order, we derive the equations of motion for binary systems with finite-sized, non-spinning but arbitrarily shaped bodies. In particular we study the contributions of the internal structure of the bodies (such as self-gravity) that would diverge if the size of the bodies were to shrink to zero. Using a set of virial relations accurate to the first post-Newtonian order that reflect the stationarity of each body, and redefining the masses to include 1PN and 2PN self-gravity terms, we demonstrate the complete cancellation of a class of potentially divergent, structure-dependent terms that scale as s^{-1} and s^{-5/2}, where s is the characteristic size of the bodies. This is further evidence of the Strong Equivalence Principle, and supports the use of post-Newtonian approximations to derive equations of motion for strong-field bodies such as neutron stars and black holes. This extends earlier work done by Kopeikin.Comment: 14 pages, submitted to Phys. Rev. D; small changes to coincide with published versio

    Revisiting the double-binary-pulsar probe of non-dynamical Chern-Simons gravity

    Get PDF
    One of the popular modifications to the theory of general relativity is non-dynamical Chern-Simons (CS) gravity, in which the metric is coupled to an externally prescribed scalar field. Setting accurate constraints to the parameters of the theory is important owing to their implications for the scalar field and/or the underlying fundamental theory. The current best constraints rely on measurements of the periastron precession rate in the double-binary-pulsar system and place a very tight bound on the characteristic CS lengthscale k_cs^{-1} <~ 3*10^{-9} km. This paper considers several effects that were not accounted for when deriving this bound and lead to a substantial suppression of the predicted rate of periastron precession. It is shown, in particular, that the point mass approximation for extended test bodies does not apply in this case. The constraint to the characteristic CS lengthscale is revised to k_cs^{-1} <~ 0.4 km, eight orders of magnitude weaker than what was previously found.Comment: 12 pages, 4 figures, to be submitted to PRD. Comments are welcom

    Singularity problem in f(R) model with non-minimal coupling

    Full text link
    We consider the non-minimal coupling between matter and the geometry in the f(R) theory. In the new theory which we established, a new scalar ψ\psi has been defined and we give it a certain stability condition. We intend to take a closer look at the dark energy oscillating behavior in the de-Sitter universe and the matter era, from which we derive the oscillating frequency, and the oscillating condition. More importantly, we present the condition of coupling form that the singularity can be solved. We discuss several specific coupling forms, and find logarithmic coupling with an oscillating period ΔT∼Δz\Delta T\sim\Delta z in the matter era z>4z>4, can improve singularity in the early universe. The result of numerical calculation verifies our theoretic calculation about the oscillating frequency. Considering two toy models, we find the cosmic evolution in the coupling model is nearly the same as that in the normal f(R) theory when lna>4lna>4. We also discuss the local tests of the non-minimal coupling f(R) model, and show the constraint on the coupling form.Comment: 13 pages, 4 figure

    Capture of non-relativistic particles in eccentric orbits by a Kerr black hole

    Full text link
    We obtain approximate analytic expressions for the critical value of the total angular momentum of a non-relativistic test particle moving in the Kerr geometry, such that it will be captured by the black hole. The expressions apply to arbitrary orbital inclinations, and are accurate over the entire range of angular momentum for the Kerr black hole. The expressions can be easily implemented in N-body simulations of the evolution of star clusters around massive galactic black holes, where such captures play an important role.Comment: 8 pages, 1 figure, published versio
    • …
    corecore