16,459 research outputs found

    Photographic observations of 10 artificial meteors

    Get PDF
    Photographic observation of artificial meteo

    Bringing closure to microlensing mass measurement

    Get PDF
    Interferometers offer multiple methods for studying microlensing events and determining the properties of the lenses. We investigate the study of microlensing events with optical interferometers, focusing on narrow-angle astrometry, visibility, and closure phase. After introducing the basics of microlensing and interferometry, we derive expressions for the signals in each of these three channels. For various forecasts of the instrumental performance, we discuss which method provides the best means of measuring the lens angular Einstein radius theta_E, a prerequisite for determining the lens mass. If the upcoming generation of large-aperture, AO-corrected long baseline interferometers (e.g. VLTI, Keck, OHANA) perform as well as expected, theta_E may be determined with signal-to-noise greater than 10 for all bright events. We estimate that roughly a dozen events per year will be sufficiciently bright and have long enough durations to allow the measurement of the lens mass and distance from the ground. We also consider the prospects for a VLTI survey of all bright lensing events using a Fisher matrix analysis, and find that even without individual masses, interesting constraints may be placed on the bulge mass function, although large numbers of events would be required.Comment: 23 pages, aastex, submitted to Ap

    Relationship between High-Energy Absorption Cross Section and Strong Gravitational Lensing for Black Hole

    Full text link
    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.Comment: 6 pages, 2 figures, improved version, accepted for publication as a Rapid Communication in Physical Review

    Community detection in complex networks using flow simulation

    Get PDF
    Community detection and analysis is an important part of studying the organization of complex systems in real world, and it�s extensively applied on many fields. Recently, many of existing algorithms are not effective or the results are unstable. In this paper, a new method of community testing is proposed by us based on the conception of flow field. In our approach, each node is represented as a field source and has a tendency to forward data to the connected nodes with highest field strength, after some iterations the nodes with same data information form a community. It is evaluated by us for the approach on some synthetic and real-world networks whose community structures are known. It is demonstrated that the approach performs wellin effectiveness and robustness. © 2017 Association for Computing Machinery

    Detection of subthreshold pulses in neurons with channel noise

    Full text link
    Neurons are subject to various kinds of noise. In addition to synaptic noise, the stochastic opening and closing of ion channels represents an intrinsic source of noise that affects the signal processing properties of the neuron. In this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to transient input subthreshold pulses. It was found that the average response time decreases but variance increases as the amplitude of channel noise increases. In the case of single pulse detection, we show that channel noise enables one neuron to detect the subthreshold signals and an optimal membrane area (or channel noise intensity) exists for a single neuron to achieve optimal performance. However, the detection ability of a single neuron is limited by large errors. Here, we test a simple neuronal network that can enhance the pulse detecting abilities of neurons and find dozens of neurons can perfectly detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is also found both at the level of single neurons and at the level of networks. At the network level, the detection ability of networks can be optimized for the number of neurons comprising the network.Comment: 14 pages, 9 figure
    • …
    corecore