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ABSTRACT 

Community detection and analysis is an important part of 

studying the organization of complex systems in real world, and 

it’s extensively applied on many fields. Recently, many of 

existing algorithms are not effective or the results are unstable. In 

this paper, a new method of community testing is proposed by us 

based on the conception of flow field. In our approach, each node 

is represented as a field source and has a tendency to forward data 

to the connected nodes with highest field strength, after some 

iterations the nodes with same data information form a 

community. It is evaluated by us for the approach on some 

synthetic and real-world networks whose community structures 

are known. It is demonstrated that the approach performs wellin 

effectiveness and robustness. 
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1. INTRODUCTION 
A lot of real-world systems can be modeled as complex 

networks[1][2], where nodes represent entities and edges stand for 

the relationships among entities. There are many statistical 

properties in complex network, such as small-world effect[3], 

scale-free property[4][5] and hierarchical structure[6]. Except for 

the statistical properties above, complex networks always present 

another important character, community structure where the 

density of edges in a community is more denser than that among 

different communities. Usually, a community is a basic functional 

module or organization unit of the network. Therefore, finding out 

the community structures is very helpful for better understanding 

the function and characteristics of the complex network. 

In recent years, many efforts have been made on community 

detection problem. A lot of methods have been proposed based on 

different conceptions and hypothesis . For example, the GN 

algorithm[7] proposed by Newman and Girvan makes use of the 

conception of edge betweenness. GN algorithm iteratively 

removes links with the largest edge betweenness until all links in 

the graph have been removed. One of the drawbacks is that one 

should deal with the whole hierarchical tree, because GN doesn’t 

offer a criterion to judge which partition is the best. In order to 

determine the best partition, Newman further proposed 

Modularity Q which originates the study of mixing patterns[8] in 

network. A larger modularity indicates better partition. 

Modularity[9] indicates to what extent the edges in the found 

community structure are more than that by random chance. Later, 

Clause et.al proposed a fast modularity greedy algorithm[10] by 

using max-heap data structure. Since then, many methods aiming 

at optimizing modularity were proposed[11][12][13][14]. 

Different from classical GN and Modularity methods, there are 

other novel algorithms for detecting community structure. Label 

Propagation Algorithm[15] (LPA) proposed by Raghvan has near 

linear time complexity. This method firstly assigns each node with 

a unique label; in each iteration, every node adopts the label 

which most of its neighbors own as its label until each node in the 

network doesn’t change its label. Subeljet. al. noticed that the 

prior updated labels in LPA have an advantage of propagating 

their labels in network. This phenomenon depresses the 

robustness of LPA method. So they put forward the balanced 

propagation algorithm[16] (BPA) which assigned smaller weights 

to the nodes that are preferentially updated. Compared with basic 

LPA method, BPA enjoys higher robustness and accuracy. The 

WalkTrap[17] proposed by Pons et.al. introduced the random 

walk metric as the similarities between nodes and utilized the 

modularity as the stopping criterion. Motivated by the success of 

WalkTrap, Steinhaeuser et.al. employed real random walk and 

proposed the Random Walk method[18]. They presumed that a 

random walker with limited steps seldom crosses the boundary of 

two different communities and would like to stay in the 

community where it belongs. Random Walk approach results in a 

similarity matrix and with the help of agglomerative technique, it 

gets the final partition. 

Except for the approaches mentioned above, some local 

community detection algorithms were also proposed, assuming 

that it is hard to obtain the global topology because of the 

dynamic feature of the network. These methods find local 
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community structure by optimizing some local metrics, such as 

local community metric L[19], local modularity R[20], modularity 

M[21] and so on. When we focus on the belongings of some 

specific nodes rather than all nodes in network, the local methods 

are more effective than those which need the whole topology. 

Most algorithms above define the conception of community from 

the perspective of topology structure. In this paper, we notice that 

a community in complex network is also a functional module and 

organization unit. The information exchange is more frequent in 

the same community or during an outbreak of infectious disease, 

members in a community are more prone to get infected by those 

who are in the same community. The exchanged information or 

virus acts as some kinds of flows in complex network. If we 

appropriately simulate the flow process in the network and regard 

the nodes impacted by same flow as the members in same 

community, we can naturally get a novel definition of community 

from flow perspective and give a new community detection 

algorithm based on flow simulation. 

This paper is organized as follows: the conception of data flow 

field and the accompanying community detection algorithm are 

detailed in Section 2. Section 3 shows experimental results and 

analysis on real-world and synthetic networks. In section 4, we 

give the conclusion. 

2. METHOD 

2.1 Data Flow Field and Community 

Structure from Flow Perspective 
Many processes appearing in complex network, such as epidemic 

dynamics[22] and cascading failures[23], can be regarded as some 

kinds of flows in an abstract sense. The differences lie in that each 

kind of processes has different form and effect[24]. Generally, 

such flow process can be studied by using the differential equation 

below: 

 x˙i= f(xi,xΓi)                              (1) 

wherexi and Γiare the state variable and neighbor set of node i, 

respectively while f is a function where the arguments are the state 

variables of node iand its neighbors. In mathematics and physics, 

such description method is equivalent to defining a field on the 

network and equation (1) is the field equation. 

The statements above indicates us that there seems to exist some 

kinds of flows in complex network. In order to describe and make 

use of these flow processes, we put forward the conception of data 

flow field for community detection: we use “data” representing 

the interaction between nodes; the quantity and direction of 

“data“ represent the interaction strength and direction, 

respectively; in addition, for community detection problem, we 

focus on the aspect of direction while the quantity of “data” is 

only used to decide where the “data” should go in next step; for 

simulating a flow process, we must predefine the direction on 

each node; once a piece of “data” come to one node, it is then 

transformed to the next node according to the predefined direction. 

After defining a field on network, we must determine what a 

community looks like from the flow viewpoint. Considering that 

the spread of interaction or data between nodes in the same 

community is rapider than that between different communities, we 

regard the nodes influenced by same “data” flow belong to the 

same community. 

The statements above hint us that flow simulation can be used to 

find community structure in network as long as we use reasonable 

flow pattern and appropriately determine the direction predefined 

on each node. 

One of alternative schemes is the simulation of epidemic disease. 

The reasons why this flow is suitable for detecting community are 

stated below: consider two members in the same community X 

and Y who have directed link between them and assume that X 

has been infected by some kind of virus. Then as X would infect 

Y through direct contact or indirect contact with their common 

neighbors, the probability that Y gets infected is proportional to 

the account of common neighbors of them. This indicates that at 

next moment, the virus carrier X would infect the one who has the 

most common neighbors with him. In this way according to the 

account of their common neighbors, we could determine the 

direction predefined on each node. As the contacts between 

members in the same community are more frequent than that 

between different communities. The virus flow prefers to stay in 

the same community. At last, according to the kind of virus 

carried by each node, we can determine the members who are in 

the same community. 

2.2 Community Detection Method Using 

Information Flow Simulation 
We use different labels denoting different viruses. The proposed 

information flow algorithm (IFA) has two phases: 

1) Spread of information in network: First of all, count the 

numbers of common neighbors between all directed nodes. This 

results in a 2-tuple set, i.e., {((u,v),|Γ(u) ∩ Γ(v)|) : (u,v) ∈E,|Γ(u) 

∩ Γ(v)| >0}, where Γ(u) is the neighbor set of u, |A| is the 

cardinality of set A. We require that in this set for each pair of 

nodes, the number of common neighbors is larger than zero. 

Because if the number is zero, we can’t decide which way the 

virus should go. Secondly, we sort the elements in the 2-tuple set 

according to the account of common neighbors in descending 

order. Finally, we label each pair of nodes in the set from front to 

back. We might encounter four kinds of situations: (ii) 

 

(a) (b) 

Figure 1. Illustration for explaining rule (iv) of IFA: (a) node 5 

and 9 have not been given labels; (b) each of node 5 and 9 is 

given a unique label. Node colors represent the labels each 

node own. 

A. If each node in the pair has not been labeled, then these two 

nodes are assigned with same unique labels. It indicates a new 

information appears in the network and infects the nodes in 

this pair at the same time; 

B. If one of the nodes in a pair (u,v), assuming u, has been given 

a label L, but node v doesn’t have a label yet. Then we give 

node v the same label L. It indicates the information L is 

transmitted from node u to v; 

C. If each node in the pair has a label, we shouldn’t change the 

labels that they own. Because in this case, each node in the 

pair has already been infected by certain information and it 
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means that these nodes have found the communities where 

they belong, then we can’t change their labels; 

D. After labeling all pairs in the set, there may still exist some 

nodes without labels (for example, node 5 and 9 in Fig. 1(a)). 

We don’t distinguish these cases and assign these nodes with 

unique labels (Fig. 1(b)). 

 

2) Integration of quasi community: The second phase is the 

integration phase. As we will see later, IFA tends to find clique 

(complete graph) structures in network. We call this phenomenon 

the “Whirlpool Effect”. Though clique structure is also one kind 

of community, these quasi communities (including cliques) are so 

strict that such structures prevent IFA from finding reasonable 

partitions. For solving this effect, we use modularity algorithm[9] 

to integrate these quasi communities until when combining any 

two communities would lead to a decrease in modularity. 

When the integration phase finished, the IFA algorithm finishes. 

The nodes with same labels belong to same community. 

3. EXPERIMENTAL RESULTS AND 

ANALYSIS 
In this section, we apply our method to synthetic networks and 

real-world to verify the rationality and effectiveness. 

3.1 Experimental Results on 

ComputerGenerated Benchmarks 
1) Results on GN benchmarks: We firstly apply our algorithm on 

Girvan-Newman (GN) benchmarks[2]. GN benchmark is consist 

of 4 planted communities and each community contains 32 nodes. 

The average degree of a node is fixed to 16 among which Zout 

edges connect to nodes in different communities and the 

remaining edges connect to the members in the same community. 

For each fixed Zout, we generate 20 GN networks and test the 

methods 100 times on each of them. Thus results for each 

parameter Zout are averaged over 2000 realizations. 

 
(a) (b) 

Figure 2. Tests of some methods and EFA on GN benchmarks. 

The accuracy is measured by NMI (left) and Modularity 

(right) metrics. 

The results are shown in Fig. 2.From the figures we can see,IFA 

performs better than LPA and BPA but worse than 

FastQ,WalkTrap which are based on modularity and OSLOM 

which is based on statistics. The accuracy of LPA,BPA starts to 

decline when Zoutis around 5 while LPA still perform good. This 

is because that when Zoutincreases,the community structure would 

become unclear, the label in label propagation 

algorithm(LPA,BPA) would flow to another community. But in 

IFA,high density place still exist in networks with fuzzy 

community structure, when information flow from high density 

place to low density place, all the information would compete at 

the border of community and it’s hard for them to beyond the 

border. On the other hand,GN network is homogeneous, so the 

FastQ and WalkTrap which expecting the max modularity and 

OSLOM which focusing to optimizing the statictics perform 

better than IFA. 

2) Results on LFR benchmarks: The node degrees and sizes of 

communities in real-world networks satisfy the power-law 

distribution while GN benchmarks can’t generate such graphs. So 

we further test these methods on LFR benchmarks [29]. LFR 

benchmark can generate testing networks satisfying the power-

law distribution. LFR benchmark has eight parameters: we set the 

size of network to 1000; the power-law exponents of node degrees 

and community sizes are set to 2 and 1 respectively; average 

degree and maximum degree are set to 20 and 50 respectively; u is 

the mixing parameter which controls the significance of 

community structure and it ranges from 0.05 to 0.8; the ranges of 

community size are specified in the figures. We report average 

values over 100 realizations and individual runs are shown in 

scatter plots (top, bottom respectively in Fig. 3). 

 
(a)(b) 

 
     (c)                                         (d) 

Figure 3. Average NMI of compared methods and IFA on 

LFR benchmarks. The scale of networks is 1000 and 5000 and 

the community size covers between [10, 50] and [20, 100] 

nodes (left, right top, bottom respectively). 

Once again, similar results are obtained on LFR benchmarks (Fig. 

3) compared with the results on GN benchmarks (Fig. 2). But the 

differences are more evident on LFR benchmarks. 

In Fig. 3(a), when the mixing parameter ranges from 0.5 to 

0.65, IFA performs better than LPA and BPA; even when BPA 

and LPA don’t perform well (u=0.6, 0.65), IFA can still find 

reasonable communities. The similar conclusions can be drawn 

from Fig. 3(b). 

But when compared to OSLOM,IFA was better than statistics 

methods only when the structure of communities are 

unclear(u=0.8).We guess that when u are large, the community 

structures will be unclear, the LFR network will be more sensitive 

to random disturbance, so the local structure will be similar to 

global structure, then it’s hard to distinguish the group that the 

node belongs to. As for IFA,similar to the analysis of GN,though 

the community structures are unclear when u is large, as long as 

there exists some subgraphs which are densely connected,IFA see 

those subgraphs as the cores of communities, so IFA could find 

significativecommunities.Furthermore,only when the 
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community’s size are matched to generated network’s size(Fig. 

3(c)3(d)),IFA would be better than other method. 

3.2 Results on Real-World Networks 
1) Case study of Zachary Karate Club: Karate[25] is a social 

network studied by Zachary from 1970 to 1972 and is made up of 

34 members and 78 links. The links were documented by 

observing the interact between members outside the club. During 

the study, because a conflict happened between the administrator 

and instructor, the club was split into two. The right partition is 

showed in Fig.4(f) and denoted by blue and red nodes, 

respectively. We call these two parts red community and blue 

community, respectively. From the figure, we can observe that 

each community has its own hub, i.e., node 1 in red community 

and nodes 33, 34 in blue community. Intuitively, the contacts in 

red community are closer than that in blue community. 

We illustrate the community detecting process using IFA 

algorithm with Fig. 4(a)-(f). Fig. (a) shows the generation of 

information in network. Because there are maximum common 

neighbors between nodes in pairs (33,34) and (1,2), this indicates 

that the nodes in these two pairs contact with each other closely, 

so these four node are infected by red and blue information firstly. 

Fig. 4(b) to (e) show the spread of these two information in the 

network. In this process, we notice that the spread is rapider in the 

red part than that in the blue part. This phenomenon comes from 

the intuitiveness that the edges in red community are denser than 

that in the blue community and at the same time, it also accords 

with the intuition that information spread rapidly in dense crowd 

areas. In Fig. 4(e), node 10 and 12 are colored with yellow and 

green according to rule (iv), respectively. Fig. 4(f) shows the 

result after the LPA validation phase and is just the right partition. 

Note that in karate the modularity integration phase is not 

necessary. 

 
(a)                  (b)                           (c) 

During the second phase of IFA, node 12 will turn red from green. 

The color transformation of node 10 in this phase is crucial for 

whether we can find the right partition or not: if node 10 turns 

blue, we will get the right result, but if it turns red, we then get a 

partition similar to the real one. However, in a complex network, 

there may  

 
(d)                              (e)                                     (f) 

Figure 4. Information spreading process on Karate network 

using IFA for community detection. 

exist overlapping communities and it is hard to decide which 

community some special nodes belong to. So to some extent, it is 

acceptable to assign node 10 to either blue community or red 

community. 

2) Detailed results on real-world networks: We further give the 

detailed results on real-world networks including Karate[25], 

Football[2], Risk[26] and polBooks[27] compared with LPA and 

BPA methods. The statistics of these networks are shown in Table 

1. The accuracy is measured by standard metrics: normalized 

mutual information[28](NMI), variation of information[16](VOI) 

and Modularity[9]. Because all these algorithms are randomized 

methods, every result is taken average over 10000 realizations and 

the final results are shown in Table 2. 

From Table 2, IFA performs better than LPA and BPA measured 

by NMI metric except on polBooks network and the results 

indicate that IFA could find community structure which is similar 

to the grounding truth. The larger modularity of the found 

community by IFA shows our algorithm can find reasonable 

partitions while the lower VOI values indicate that our algorithm 

has higher robustness compared with LPA and BPA. In fact, a 

deterministic community detection method would has zero VOI 

value, but because of the existence of overlapping communities, a 

community detection algorithm possibly can’t find same partition 

all the time. 

Table 1. Thestatisticsof fourreal-word networks 

Algorithms Nodes Edges Communit
y count 

Average size of 
communities 

Karate 34 78 2 17 

Football 115 613 12 9.58 

Risk 42 83 6 7 

polBooks 105 441 3 35 

 

Table 2. The results measured by NMI, MODULARITY and 

VOIonfour real-world networks. The numbers in 

bracketsrepresente standard deviations. Every result is 

averaged over 10000 implements 
Algorithms Karate Football Risk polBooks 

NMI 
LPA 0.6505(0.186) 0.8882(0.027) 0.8389(0.046) 0.5245(0.026) 

BPA 0.6513(0.341) 0.8805(0.024) 0.6983(0.698) 0.5613(0.037) 

IFA 0.8748(0.098) 0.9233(0.007) 0.8676(0.039) 0.5423(0.017) 

Modularity 
LPA 0.355(0.077) 0.587(0.015) 0.593(0.593) 0.504(0.016) 

BPA 0.287(0.136) 0.599(0.065) 0.502(0.094) 0.459(0.019) 

IFA 0.373(0.02) 0.601(0.0007) 0.618(0.014) 0.514(0.008) 

VOILP
A 0.191(0.087) 0.071(0.036) 0.150(0.052) 0.085(0.045) 

BPA 0.141(0.083) 0.068(0.033) 0.170(0.079) 0.075(0.044) 

IFA 0.060(0.045) 0.010(0.011) 0.100(0.041) 0.053(0.032) 

 

3)Whirlpool Effect: In this section, we illustrate the “Whirlpool 

Effect” by using a toy model with two communities to explain 

why IFA method is prone to find clique structures in network. 

 
(a)                                      (b) 

Figure 5. Toy model for explaining Whirlpool Effect: (a) the 

updating order of nodes is successively colored by red, green 

and blue; (b) the final partition found by IFA (colored by 

green and blue, respectively). 
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In reality, once an object with small inertial mass falls into a 

whirlpool in the water and without the help of external force, the 

small object is hard to escape from the whirlpool by itself. It 

seems that the whirlpool grasps the object tightly, keep it rotating 

in the vortex. Similarly, our algorithm also has such effect. 

Intuitively, the 

Table 3. Cliques found by LPA and IFA onreal-world 

networks 

Algorithms Karate Risk Football polBooks Total 

LPA 487 1191 4179 1243 7100 
IFA 324 1403 7570 171 9468 

 

whirlpool effect of IFA refers to the phenomenon that if we regard 

the labels as the tiny object with small inertial mass, during the 

first phase of our algorithm, the labels seldom go across the 

boundary of two communities with apparent different link 

densities, i.e., the label is dragged by the community where it 

belongs and is difficult to intrude into other communities. 

For example, the toy model (shown in Fig. 5) aiming to illustrate 

this effect is composed of 10 nodes. These 10 nodes can be further 

grouped into two cliques, i.e., {1,2,3,4,5,6}, {7,8,9,10}. We refer 

to these two cliques as C1 and C2, respectively. According to our 

algorithm, the labeling order is successively colored by red, green 

and blue in Fig. 5(a). In Fig. 5(a), we notice that the red and green 

labels don’t invade C2 and it looks like that the red and green 

labels in C1 are constrained by attraction of C1. Likewise, the 

blue labels in C2 also don’t invade C1. Fig. 5(b) shows the final 

result and indicates that the two clique structures in the toy model 

are separated and found completely by IFA. 

In fact, during the first phase of IFA, if IFA hasn’t finish labeling 

the nodes in denser areas, nodes in less denser areas can never be 

labeled. From Fig. 5, we can see that edge density in C1 are 

denser than that in C2. If we pay attention to the labeling order, all 

nodes in C1 (red, green) have been labeled before labeling the 

nodes in C2 (blue). This character implies that IFA separates 

denser areas in network while clique structure happens to be one 

kind of such dense areas. 

To investigate to what extent our algorithm can find out clique 

structure, we run our algorithm without integration phase and LPA 

on four real-world networks 1000 times. The number of found 

cliques are recorded in Table 3. In this experiment we require that 

the size of cliques is larger than or equal to 3. As we can see from 

the table, our algorithm can find out more cliques than LPA in 

these networks. So in some kinds of networks, IFA tends to find 

cliques. It is crucial for IFA algorithm to integrate the quasi 

communities (cliques) using methods such as greedy modularity 

algorithm. 

4. CONCLUSION 
In this paper, we start from the consideration of flow process 

existing in the network and realize such process can be simulated 

through properly defining fluxion direction on each node. We 

proposed a new flow-based community detection algorithm, the 

information flow algorithm, by simulating the information 

spreading process in network. Experimental results on real-world 

and synthetic networks show that the information flow algorithm 

enjoys higher accuracy and robustness compared with typical 

algorithms. When the community structure gets vaguer, especially 

when LPA and BPA don’t perform well, IFA method can still find 

some reasonable and accurate partitions. 

Though IFA to some extent simulates the flow propagation 

process in network, the rules are oversimplified. In the future, we 

will improve these rules for flow simulation and search for other 

kinds of flow patterns that can be applied to community detection 

problem. 
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