27 research outputs found
Effects of simulated removal activities on movements and space use of feral swine
Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas
Effects of simulated removal activities on movements and space use of feral swine
Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas
The Infrared Array Camera (IRAC) for the Spitzer Space Telescope
The Infrared Array Camera (IRAC) is one of three focal plane instruments in
the Spitzer Space Telescope. IRAC is a four-channel camera that obtains
simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 microns. Two nearly
adjacent 5.2x5.2 arcmin fields of view in the focal plane are viewed by the
four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four
detector arrays in the camera are 256x256 pixels in size, with the two shorter
wavelength channels using InSb and the two longer wavelength channels using
Si:As IBC detectors. IRAC is a powerful survey instrument because of its high
sensitivity, large field of view, and four-color imaging. This paper summarizes
the in-flight scientific, technical, and operational performance of IRAC.Comment: 7 pages, 3 figures. Accepted for publication in the ApJS. A higher
resolution version is at http://cfa-www.harvard.edu/irac/publication
Understanding and measuring child welfare outcomes
The new Children\u27s and Family Services Reviews (CFSR) process focuses on the effectiveness of services to children and families by measuring client outcomes. This article reviews the research literature related to child welfare outcomes in order to provide a context for federal accountability efforts. It also summarizes the 2001 federal mandate to hold states accountable for child welfare outcomes and describes California\u27s response to this mandate. Implications of the outcomes literature review and measurement problems in the CFSR process suggest CSFR measures do not always capture meaningful outcomes. Recommendations for change are made
Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations
The amendment of the subsurface with nanoscale metallic iron particles
(nano-Fe0) has been discussed in the literature as an efficient in situ
technology for groundwater remediation. However, the introduction of this
technology was controversial and its efficiency has never been univocally
established. This unsatisfying situation has motivated this communication whose
objective was a comprehensive discussion of the intrinsic reactivity of
nano-Fe0 based on the contemporary knowledge on the mechanism of contaminant
removal by Fe0 and a mathematical model. It is showed that due to limitations
of the mass transfer of nano-Fe0 to contaminants, available concepts cannot
explain the success of nano-Fe0 injection for in situ groundwater remediation.
It is recommended to test the possibility of introducing nano-Fe0 to initiate
the formation of roll-fronts which propagation would induce the reductive
transformation of both dissolved and adsorbed contaminants. Within a
roll-front, FeII from nano-Fe0 is the reducing agent for contaminants. FeII is
recycled by biotic or abiotic FeIII reduction. While the roll-front concept
could explain the success of already implemented reaction zones, more research
is needed for a science-based recommendation of nano- Fe0 for subsurface
treatment by roll-front
Effects of hypoxia on the distribution of calcium in arterial smooth muscle cells of rats and swine
Exposure to hypoxia caused an increase in the hematocrit and right heart weight of experimental rats, but did not affect calcium-45 uptake by pulmonary arterial smooth muscle cells. However, autoradiographic studies showed that hypoxia apparently caused a shift of 45-Ca from primarily extracellular sites in arteries of control rats to intracellular sites in tissues of hypertensive rats. Cytochemical studies of calcium distributions in pulmonary arterial smooth muscle cells support the autoradiographic data and show that in both rats and swine the majority of pyroantimonate granules occur extracellularly in control tissues. In contrast, hypoxic tissues displayed a greatly reduced number of granules in extracellular sites and an increase in the amount of precipitate in intracellular sites. In pulmonary arterial smooth muscle cells from hypoxic rats most of the precipitate was associated with the caveolae intracellulares, while in corresponding cells from hypoxic swine the majority of the pyroantimonate granules were localized to the sarcoplasmic reticulum. Hypoxia may produce pulmonary hypertension by interfering with the ability of the arterial smooth muscle cells to maintain transmembrane ionic gradients, thus producing an effective increase in cytoplasmic calcium levels. The increased calcium may then activate the contractile apparatus to produce a sustained vasoconstriction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47664/1/441_2004_Article_BF00223235.pd
Chapitre 14: Phytopathogènes et stratégies de contrôle en aquaponie
peer reviewedAmong the diversity of plant diseases occurring in aquaponics, soil-borne
pathogens, such as Fusarium spp., Phytophthora spp. and Pythium spp., are the most
problematic due to their preference for humid/aquatic environment conditions.
Phytophthora spp. and Pythium spp. which belong to the Oomycetes pseudo-fungi
require special attention because of their mobile form of dispersion, the so-called
zoospores that can move freely and actively in liquid water. In coupled aquaponics,
curative methods are still limited because of the possible toxicity of pesticides and
chemical agents for fish and beneficial bacteria (e.g. nitrifying bacteria of the
biofilter). Furthermore, the development of biocontrol agents for aquaponic use is
still at its beginning. Consequently, ways to control the initial infection and the
progression of a disease are mainly based on preventive actions and water physical
treatments. However, suppressive action (suppression) could happen in aquaponic
environment considering recent papers and the suppressive activity already
highlighted in hydroponics. In addition, aquaponic water contains organic matter
that could promote establishment and growth of heterotrophic bacteria in the system
or even improve plant growth and viability directly. With regards to organic
hydroponics (i.e. use of organic fertilisation and organic plant media), these bacteria
could act as antagonist agents or as plant defence elicitors to protect plants from
diseases. In the future, research on the disease suppressive ability of the aquaponic
biotope must be increased, as well as isolation, characterisation and formulation of
microbial plant pathogen antagonists. Finally, a good knowledge in the rapid
identification of pathogens, combined with control methods and diseases monitoring,
as recommended in integrated plant pest management, is the key to an efficient
control of plant diseases in aquaponics.Cos
SPARC 2022 book of abstracts
Welcome to the Book of Abstracts for the 2022 SPARC conference. Our conference is called “Moving Forwards” reflecting our re-emergence from the pandemic and our desire to reconnect our PGR community, in celebration of their research. PGRs have continued with their research endeavours despite many challenges, and their ongoing successes are underpinned by the support and guidance of dedicated supervisors and the Doctoral School Team. To recognise supervision excellence we will be awarding our annual Supervisor of the Year prizes, based on the wonderful nominations received from their PGR students.Once again, we have received a tremendous contribution from our postgraduate research community; with over 60 presenters, 12 Three-Minute Thesis finalists, and 20 poster presentations, the conference showcases our extraordinarily vibrant, inclusive, and resilient PGR community at Salford. This year there will be prizes to be won for ‘best in conference’ presentations, in addition to the winners from each parallel session. Audience members too could be in for a treat, with judges handing out spot prizes for the best questions asked, so don’t miss the opportunity to put your hand up. These abstracts provide a taster of the diverse and impactful research in progress and provide delegates with a reference point for networking and initiating critical debate. Take advantage of the hybrid format: in online sessions by posting a comment or by messaging an author to say “Hello”, or by initiating break time discussions about the amazing research you’ve seen if you are with us in person. Who knows what might result from your conversation? With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. As recent events have shown, researchers need to collaborate to meet global challenges. Interdisciplinary and international working is increasingly recognised and rewarded by all major research funders. We do hope, therefore, that you will take this opportunity to initiate interdisciplinary conversations with other researchers. A question or comment from a different perspective can shed new light on a project and could lead to exciting collaborations, and that is what SPARC is all about. SPARC is part of a programme of personal and professional development opportunities offered to all postgraduate researchers at Salford. More information about this programme is available on our website: Doctoral School | University of Salford. Registered Salford students can access full details on the Doctoral School hub: Doctoral School Hub - Home (sharepoint.com) You can follow us on Twitter @SalfordPGRs and please use the #SPARC2022 to share your conference experience.We particularly welcome taught students from our undergraduate and master’s programmes as audience members. We hope you enjoy the presentations on offer and that they inspire you to pursue your own research career. If you would like more information about studying for a PhD here at the University of Salford, your lecturers can advise, or you can contact the relevant PGR Support Officer; their details can be found at Doctoral School | University of Salford. We wish you a rich and rewarding conference experience