116 research outputs found

    Exporting and labor demand : micro-level evidence from Germany

    Get PDF
    It is widely believed that globalization affcts the extent of employment and wage responses to economic shocks. To provide evidence for this, we analyze the effect of firms' exporting behavior on the elasticity of labor demand. Using rich, German administrative linked employer-employee panel data from 1996 to 2008, we explicitly control for self-selection into exporting and endogeneity concerns. In line with our theoretical model, we find that exporting at both the intensive and extensive margins significantly increases the (absolute value of the) unconditional own-wage labor demand elasticity. This is not only true for the average worker, but also for different skill groups. For the median firm, the elasticity is three-quarters higher when comparing exporting to nonexporting firms

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells

    α-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate

    Get PDF
    BACKGROUND: A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H2O2 that promoted cell death. METHODS: The redox-silent vitamin E analogue a-tocopheryl succinate (a-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. RESULTS: Prostate cancer cells were sensitive to a-TOS and VK3 treatment, but resistant to AA upto 3.2mM. When combined, a synergistic effect was found for VK3\u2013AA, whereas a-TOS\u2013VK3 and a-TOS\u2013AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA\u2013VK3 combination combined with a sub-toxic dose of a-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal\u2013mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. CONCLUSION: These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease
    corecore