41,293 research outputs found

    Adhesive for aluminum withstands cryogenic temperatures

    Get PDF
    Polyurethane adhesive mixed to various proportions with milled glass fibers match the thermal characteristics of 2014-T6 aluminum at cryogenic temperatures

    A monostrain test apparatus

    Get PDF
    Test apparatus is designed for determining tensile strength, modulus of elasticity, elongation, and thermal coefficient of contraction or expansion of uniformly shaped plastics, adhesives, and foam materials over temperature range of 700 to 90 K (800 to -300). Tests may be used in design quality control, and in evaluation of new adhesives and plastic materials

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-

    Downwind hazard calculations for space shuttle launches at Kennedy Space Center and Vandenberg Air Force Base

    Get PDF
    The quantitative estimates are presented of pollutant concentrations associated with the emission of the major combustion products (HCl, CO, and Al2O3) to the lower atmosphere during normal launches of the space shuttle. The NASA/MSFC Multilayer Diffusion Model was used to obtain these calculations. Results are presented for nine sets of typical meteorological conditions at Kennedy Space Center, including fall, spring, and a sea-breeze condition, and six sets at Vandenberg AFB. In none of the selected typical meteorological regimes studied was a 10-min limit of 4 ppm exceeded

    Prediction of engine exhaust concentrations downwind from the Delta-Thor Telsat-A launch of 9 November 1972

    Get PDF
    Results are presented of the downwind concentrations of engine exhaust by-products from the Delta-Thor Telsat-A vehicle launched from Cape Kennedy, Florida on November 9, 1972 (2014 EST). The meteorological conditions which existed are identified as well as the exhaust cloud rise and the results from the MSFC Multilayer Diffusion Model calculations. These predictions are compared to exhaust cloud sampled data acquired by the Langley Research Center personnel. Values of the surface level concentrations show that very little hydrochloric acid, carbon monoxide, or aluminum oxide reached the ground

    An analytical analysis of the dispersion predictions for effluents from the Saturn 5 and Scout-Algol 3 rocket exhausts

    Get PDF
    Predictions of the spatial concentration mapping of the potentially toxic constituents of the exhaust effluents from a launch of a Saturn 5 and of a Scout-Algol 3 vehicle utilizing the NASA/MSFC Multilayer Diffusion Program are provided. In the case of the Saturn 5, special attention was given to the concentration fields of carbon monoxide with a correlation of carbon dioxide concentrations. The Scout-Algol 3 provided an example of the centerline concentrations of hydrogen chloride, carbon monoxide, and alumina under typical meteorological conditions. While these results define the specific environmental impact of these two launches under the meteorological conditions existing during launches, they also provide a basis for the empirical monitoring of the constituents of the exhaust effluents of these vehicles

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Mean properties and Free Energy of a few hard spheres confined in a spherical cavity

    Get PDF
    We use analytical calculations and event-driven molecular dynamics simulations to study a small number of hard sphere particles in a spherical cavity. The cavity is taken also as the thermal bath so that the system thermalizes by collisions with the wall. In that way, these systems of two, three and four particles, are considered in the canonical ensemble. We characterize various mean and thermal properties for a wide range of number densities. We study the density profiles, the components of the local pressure tensor, the interface tension, and the adsorption at the wall. This spans from the ideal gas limit at low densities to the high-packing limit in which there are significant regions of the cavity for which the particles have no access, due the conjunction of excluded volume and confinement. The contact density and the pressure on the wall are obtained by simulations and compared to exact analytical results. We also obtain the excess free energy for N=4, by using a simulated-assisted approach in which we combine simulation results with the knowledge of the exact partition function for two and three particles in a spherical cavity.Comment: 11 pages, 9 figures and two table

    Microscopic heat from the energetics of stochastic phenomena

    Full text link
    The energetics of the stochastic process has shown the balance of energy on the mesoscopic level. The heat and the energy defined there are, however, generally different from their macroscopic counterpart. We show that this discrepancy can be removed by adding to these quantities the reversible heat associated with the mesoscopic free energy.Comment: 4 pages, 0 figur
    corecore