2,521 research outputs found

    State detection using coherent Raman repumping and two-color Raman transfers

    Full text link
    We demonstrate state detection based on coherent Raman repumping and a two-color Raman state transfer. The Raman coupling during detection selectively eliminates unwanted dark states in the fluorescence cycle without compromising the immunity of the desired dark state to off-resonant scattering. We demonstrate this technique using 137Ba+^{137}\mathrm{Ba}^+ where a combination of Raman coupling and optical pumping leaves the D3/2D_{3/2} F"=3,mF"=3\ket{F"=3,m_F"=3} metastable state optically dark and immune to off-resonant scattering. All other states are strongly coupled to the upper P1/2P_{1/2} levels. We achieve a single shot state-detection efficiency of 89.6(3)89.6(3)% in a 1ms1\mathrm{ms} integration time, limited almost entirely by technical imperfections. Shelving to the F"=3,mF"=3\ket{F"=3,m_F"=3} state before detection is performed via a two-color Raman transfer with a fidelity of 1.00(3)1.00(3)

    Music symbol recognition

    Get PDF
    This paper focuses on optical music recognition (OMR) system that recognizes the musical symbols on a digitized music sheet and converts them into symbolic music representation. Two main stages are distinguished ? pre-processing and symbol analysis. In the pre-processing stage, staves are detected and removed; while in the symbol analysis stage, each musical symbol is recognized and analyzed. The musical semantics are then determined and converted into symbolic music representation stored in text form

    Unveiling the capabilities of bipolar conical channels in neuromorphic iontronics

    Full text link
    Conical channels filled with an aqueous electrolyte have been proposed as promising candidates for iontronic neuromorphic circuits. This is facilitated by a novel analytical model for the internal channel dynamics [Kamsma et al., arXiv:2301.06158, 2023], the relative ease of fabrication of conical channels, and the wide range of achievable memory retention times by varying the channel lengths. In this work, we demonstrate that the analytical model for conical channels can be generalized to channels with an inhomogeneous surface charge distribution, which we predict to exhibit significantly stronger current rectification and more pronounced memristive properties in the case of bipolar channels, i.e. channels where the tip and base carry a surface charge of opposite sign. Additionally, we show that the use of bipolar conical channels in a previously proposed iontronic circuit features hallmarks of neuronal communication, such as all-or-none action potentials and spike train generation. Bipolar channels allow, however, for circuit parameters in the range of their biological analogues, and exhibit membrane potentials that match well with biological mammalian action potentials, further supporting its potential for bio-compatibility

    Solidity of viscous liquids. IV. Density fluctuations

    Get PDF
    This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k-space of the form Γ0+Dk2\Gamma_0+Dk^2 with DΓ0a2D\gg\Gamma_0a^2 where aa is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which implies that the Hamiltonian (free energy) may be taken to be ultra local. As an illustration of the theory the case with the simplest non-trivial Hamiltonian is solved to second order in the Gaussian approximation, where it predicts an asymmetric frequency dependence of the isothermal bulk modulus with Debye behavior at low frequencies and an ω1/2\omega^{-1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields, is proposed

    Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors

    Full text link
    Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realisable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus

    Investigation of the water table in a tidal beach : final report

    Get PDF
    I. Instrumentation for Measurement of Water Table Fluctuations by John D. Boon, III, and W. Harrison II. The Beach Water Table as a Response Variable of the System by L. E. Fausak III. Changes in Foreshore Sand Volume: Role of Fluctuations in Water Table and Ocean Still Water Level by W. Harrison IV. One-dimensional Finite Element Analysis of the Groundwater Flow by W. Harrison, C. S. Fang, and S. N. Wang V. Two-dimensional Finite Element Analysis of the Groundwater Flow by C. S. Fang, S. N. Wang, and W. Harriso

    Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors

    Get PDF
    Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus

    Kinetic Theory of Response Functions for the Hard Sphere Granular Fluid

    Full text link
    The response functions for small spatial perturbations of a homogeneous granular fluid have been described recently. In appropriate dimensionless variables, they have the form of stationary state time correlation functions. Here, these functions are expressed in terms of reduced single particle functions that are expected to obey a linear kinetic equation. The functional assumption required for such a kinetic equation, and a Markov approximation for its implementation are discussed. If, in addition, static velocity correlations are neglected, a granular fluid version of the linearized Enskog kinetic theory is obtained. The derivation makes no a priori limitation on the density, space and time scale, nor degree of inelasticity. As an illustration, recently derived Helfand and Green-Kubo expressions for the Navier-Stokes order transport coefficients are evaluated with this kinetic theory. The results are in agreement with those obtained from the Chapman-Enskog solution to the nonlinear Enskog kinetic equation.Comment: Submitted to J. Stat. Mec
    corecore