374 research outputs found
Localization of Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures
We report strong localization of 2D electron gas in LaAlO3 / SrTiO3 epitaxial
thin-film heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 substrates by
using pulsed laser deposition with in-situ reflection high-energy electron
diffraction. Using longitudinal and transverse magnetotransport measurements,
we have determined that disorder at the interface influences the conduction
behavior, and that increasing the carrier concentration by growing at lower
oxygen partial pressure changes the conduction from strongly localized at low
carrier concentration to metallic at higher carrier concentration, with
indications of weak localization. We interpret this behavior in terms of a
changing occupation of Ti 3d bands near the interface, each with a different
spatial extent and susceptibility to localization by disorder, and differences
in carrier confinement due to misfit strain and point defects.Comment: 12 pages, 4 figure
Coexistence of superconductivity and ferromagnetism in two dimensions
Ferromagnetism is usually considered to be incompatible with conventional
superconductivity, as it destroys the singlet correlations responsible for the
pairing interaction. Superconductivity and ferromagnetism are known to coexist
in only a few bulk rare-earth materials. Here we report evidence for their
coexistence in a two-dimensional system: the interface between two bulk
insulators, LaAlO (LAO) and SrTiO (STO), a system that has been studied
intensively recently. Magnetoresistance, Hall and electric-field dependence
measurements suggest that there are two distinct bands of charge carriers that
contribute to the interface conductivity. The sensitivity of properties of the
interface to an electric field make this a fascinating system for the study of
the interplay between superconductivity and magnetism.Comment: 4 pages, 4 figure
Conductance asymmetry in point-contacts on epitaxial thin films of Ba(FeCo)As
Point-contact spectroscopy is a powerful tool for probing superconductors.
One of the most common observations in the point-contact spectra on the
recently discovered ferropnictide superconductors is a large conductance
asymmetry with respect to voltage across the point-contact. In this paper we
show that the antisymmetric part of the point-contact spectrum between a silver
tip and an epitaxial thin film of Ba(FeCo)As shows
certain unique features. These features have an interesting evolution with
increasing temperature up to a temperature that is 30% larger than the critical
temperature of the superconductor. We argue that this evolution can be
associated with the rich normal state properties of these materials.Comment: 4 pages, 2 figure
Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
Recently a metallic state was discovered at the interface between insulating
oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional
electron gas (2DEG) have attracted significant interest due to its potential
applications in nanoelectronics. Control over this carrier density and mobility
of the 2DEG is essential for applications of these novel systems, and may be
achieved by epitaxial strain. However, despite the rich nature of strain
effects on oxide materials properties, such as ferroelectricity, magnetism, and
superconductivity, the relationship between the strain and electrical
properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely
unexplored. Here, we use different lattice constant single crystal substrates
to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial
strain. We have found that tensile strained SrTiO3 destroys the conducting
2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier
concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface.
We have also found that the critical LaAlO3 overlayer thickness for 2DEG
formation increases with SrTiO3 compressive strain. Our first-principles
calculations suggest that a strain-induced electric polarization in the SrTiO3
layer is responsible for this behavior. It is directed away from the interface
and hence creates a negative polarization charge opposing that of the polar
LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer,
and reduces carrier concentration above the critical thickness, in agreement
with our experimental results. Our findings suggest that epitaxial strain can
be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface
Nanomechanics of flexoelectric switching
We examine the phenomenon of flexoelectric switching of polarization in ultrathin films of barium titanate induced by a tip of an atomic force microscope (AFM). The spatial distribution of the tip-induced flexoelectricity is computationally modeled both for perpendicular mechanical load (point measurements) and for sliding load (scanning measurements), and compared with experiments. We find that (i) perpendicular load does not lead to stable ferroelectric switching in contrast to the load applied in the sliding contact load regime, due to nontrivial differences between the strain distributions in both regimes: ferroelectric switching for the perpendicular load mode is impaired by a strain gradient inversion layer immediately underneath the AFM tip; while for the sliding load regime, domain inversion is unimpaired within a greater material volume subjected to larger values of the mechanically induced electric field that includes the region behind the sliding tip; (ii) beyond a relatively small value of an applied force, increasing mechanical pressure does not increase the flexoelectric field inside the film, but results instead in a growing volume of the region subjected to such field that aids domain nucleation processes; and (iii) the flexoelectric coefficients of the films are of the order of few nC/m, which is much smaller than for bulk BaTiO3 ceramics, indicating that there is a “flexoelectric size effect” that mirrors the ferroelectric one
Calculation of a complete set of spin observables for proton elastic scattering from stable and unstable nuclei
A microscopic study of proton elastic scattering from unstable nuclei at
intermediate energies using a relativistic formalism is presented. We have
employed both the original relativistic impulse approximation (IA1) and the
generalised impulse approximation (IA2) formalisms to calculate the
relativistic optical potentials, with target densities derived from
relativistic mean field (RMF) theory using the NL3 and FSUGold parameter sets.
Comparisons between the optical potentials computed using both IA1 and IA2
formalisms, and the different RMF Lagrangians are presented for both stable and
unstable targets. The comparisons are required to study the effect of using IA1
versus IA2 optical potentials, with different RMF parameter sets, on elastic
scattering observables for unstable targets at intermediate energies. We also
study the effect of full-folding versus the factorized form of the optical
potentials on elastic scattering observables. As with the case for stable
nuclei, we found that the use of the full-folding optical potential improves
the scattering observables (especially spin observables) at low intermediate
energy (e.g. 200MeV). No discernible difference is found at a projectile
incident energy of 500 MeV. To check the validity of using localized optical
potential, we calculate the scattering observables using non-local potentials
by solving the momentum space Dirac equation. The Dirac equation is transformed
to two coupled Lippmann-Schwinger equations, which are then numerically solved
to obtain elastic scattering observables. The results are discussed and
compared to calculations involving local coordinate-space optical potentials
Nanomechanics of flexoelectric switching
We examine the phenomenon of flexoelectric switching of polarization in ultrathin films of barium titanate induced by a tip of an atomic force microscope (AFM). The spatial distribution of the tip-induced flexoelectricity is computationally modeled both for perpendicular mechanical load (point measurements) and for sliding load (scanning measurements), and compared with experiments. We find that (i) perpendicular load does not lead to stable ferroelectric switching in contrast to the load applied in the sliding contact load regime, due to nontrivial differences between the strain distributions in both regimes: ferroelectric switching for the perpendicular load mode is impaired by a strain gradient inversion layer immediately underneath the AFM tip; while for the sliding load regime, domain inversion is unimpaired within a greater material volume subjected to larger values of the mechanically induced electric field that includes the region behind the sliding tip; (ii) beyond a relatively small value of an applied force, increasing mechanical pressure does not increase the flexoelectric field inside the film, but results instead in a growing volume of the region subjected to such field that aids domain nucleation processes; and (iii) the flexoelectric coefficients of the films are of the order of few nC/m, which is much smaller than for bulk BaTiO3 ceramics, indicating that there is a “flexoelectric size effect” that mirrors the ferroelectric one
- …