38 research outputs found

    Response actions influence the categorization of directions in auditory space

    Get PDF
    Velten MCC, Bläsing B, Hermann T, Vorwerg C, Schack T. Response actions influence the categorization of directions in auditory space. Frontiers in Psychology. 2015;6: 1163.Spatial region concepts such as “front,” “back,” “left,” and “right” reflect our typical interaction with space, and the corresponding surrounding regions have different statuses in memory. We examined the representation of spatial directions in the auditory space, specifically in how far natural response actions, such as orientation movements toward a sound source, would affect the categorization of egocentric auditory space. While standing in the middle of a circle with 16 loudspeakers, participants were presented acoustic stimuli coming from the loudspeakers in randomized order, and verbally described their directions by using the concept labels “front,” “back,” “left,” “right,” “front-right,” “front-left,” “back-right,” and “back-left.” Response actions varied in three blocked conditions: (1) facing front, (2) turning the head and upper body to face the stimulus, and (3) turning the head and upper body plus pointing with the hand and outstretched arm toward the stimulus. In addition to a protocol of the verbal utterances, motion capture and video recording generated a detailed corpus for subsequent analysis of the participants’ behavior. Chi-square tests revealed an effect of response condition for directions within the left and right sides. We conclude that movement-based response actions influence the representation of auditory space, especially within the sides’ regions. Moreover, the representation of auditory space favors the front and the back regions in terms of resolution, which is possibly related to the physiological characteristics of the human auditory system, as well as to the ecological requirements of action control in the different regions

    Boundaries and Prototypes in Categorizing Direction

    Get PDF
    Projective terms such as left, right, front, back are conceptually interesting due to their flexibility of contextual usage and their central relevance to human spatial cognition. Their default acceptability areas are well known, with prototypical axes representing their most central usage and decreasing acceptability away from the axes. Previous research has shown these axes to be boundaries in certain non-linguistic tasks, indicating an inverse relationship between linguistic and non-linguistic direction concepts under specific circumstances. Given this striking mismatch, our study asks how such inverse non-linguistic concepts are represented in language, as well as how people describe their categorization. Our findings highlight two distinct grouping strategies reminiscent of theories of human categorization: prototype based or boundary based. These lead to different linguistic as well as non-linguistic patterns

    Cross-Linked Hydrophobic Starch Granules in Blends with PLA

    No full text
    The majority of native starch is used in the food sector and in the paper industry. Only a small amount is used in polymer engineering. One reason for the reluctance of the plastics processing industry to use starch as a filling material in polymer blends is the unsatisfactory mechanical behavior of starch when combined with thermoplastics. Another reason is the hydrophilicity of starch. In order to make these materials capable of competing, an amelioration of the mechanical properties is compulsory. By means of modifying the native starch and optimizing the compounding process, it is possible to improve the performance of starch blends, and, thus, increase the number of application areas of these materials. For this reason, native starch was modified with a cross-linking agent using a laboratory mixer. Subsequently, the modified starch and poly(lactic acid) were compounded using a co-rotating twin screw extruder. Cross-linking of the native starch in the laboratory mixer resulted in an increase in the mechanical strength of the starch blends. In addition, the blends with cross-linked starch displayed lower moisture absorption levels than blends with native starch as a filling material

    Representing Front, Back, Left and Right in auditory space: Action-Based response conditions affect the categorization of egocentric space

    No full text
    de Castro Campos M, Bläsing B, Herrmann T, Vorwerg C. Representing Front, Back, Left and Right in auditory space: Action-Based response conditions affect the categorization of egocentric space. Presented at the NASPSPA 2012, Honolulu, Hawaii

    Response actions influence the categorization of directions in auditory space

    Get PDF
    Spatial region concepts such as “front,” “back,” “left,” and “right” reflect our typical interaction with space, and the corresponding surrounding regions have different statuses in memory. We examined the representation of spatial directions in the auditory space, specifically in how far natural response actions, such as orientation movements toward a sound source, would affect the categorization of egocentric auditory space. While standing in the middle of a circle with 16 loudspeakers, participants were presented acoustic stimuli coming from the loudspeakers in randomized order, and verbally described their directions by using the concept labels “front,” “back,” “left,” “right,” “front-right,” “front-left,” “back-right,” and “back-left.” Response actions varied in three blocked conditions: (1) facing front, (2) turning the head and upper body to face the stimulus, and (3) turning the head and upper body plus pointing with the hand and outstretched arm toward the stimulus. In addition to a protocol of the verbal utterances, motion capture and video recording generated a detailed corpus for subsequent analysis of the participants’ behavior. Chi-square tests revealed an effect of response condition for directions within the left and right sides. We conclude that movement-based response actions influence the representation of auditory space, especially within the sides’ regions. Moreover, the representation of auditory space favors the front and the back regions in terms of resolution, which is possibly related to the physiological characteristics of the human auditory system, as well as to the ecological requirements of action control in the different regions
    corecore