7,026 research outputs found
Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition
We use laser light near resonant with an optical bound-to-bound transition to
shift the magnetic field at which a Feshbach resonance occurs. We operate in a
regime of large detuning and large laser intensity. This reduces the
light-induced atom-loss rate by one order of magnitude compared to our previous
experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are
performed in an optical lattice and include high-resolution spectroscopy of
excited molecular states, reported here. In addition, we give a detailed
account of a theoretical model that describes our experimental data
Hydrogenation Reactions in Ionic Liquids. The Efficient Reduction of Nitroarenes, including Nitroferrocenyl Derivatives, to the Corresponding Aminoarenes in [bmim][BF4]
The catalytic hydrogenation of nitroarenes, including a series of nitroferrocenyl derivatives, to aminoarenes has been successfully achieved in the ionic liquid [bmim][BF4]. The isolated yields of the aminoarenes are very good and recycling of the solvent and catalyst has been achieved.Keywords: Aminoarenes, hydrogenation, ionic liquids, nitroarenes, ferrocene
Effect of Pauli repulsion and transfer on fusion
The effect of the Pauli exclusion principle on the nucleus-nucleus bare
potential is studied using a new density-constrained extension of the
Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a
repulsion at short distance. The charge product dependence of this Pauli
repulsion is investigated. Dynamical effects are then included in the potential
with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In
particular, isovector contributions to this potential are used to investigate
the role of transfer on fusion, resulting in a lowering of the inner part of
the potential for systems with positive Q-value transfer channels.Comment: Proceedings of an invited talk given at FUSION17, Hobart, Tasmania,
AU (20-24 February, 2017
Advanced neuroimaging in neuropsychiatric systemic lupus erythematosus
PURPOSE OF REVIEW: Neuropsychiatric lupus (NPSLE) comprises a disparate collection of syndromes affecting the central and peripheral nervous systems. Progress in the attribution of neuropsychiatric syndromes to SLE-related mechanisms and development of targeted treatment strategies has been impeded by a lack of objective imaging biomarkers that reflect specific neuropsychiatric syndromes and/or pathologic mechanisms. The present review addresses recent publications of neuroimaging techniques in NPSLE. RECENT FINDINGS: Imaging studies grouping all NPSLE syndromes together are unable to differentiate between NPSLE and non-NPSLE. In contrast, diffusion tensor imaging, FDG-PET, resting, and functional MRI techniques in patients with stable non-NPSLE demonstrate abnormal network structural and functional connectivity and regional brain activity in multiple cortical areas involving the limbic system, hippocampus, frontal, parietal, and temporal lobes. Some of these changes associate with impaired cognitive performance or mood disturbance, autoantibodies or inflammatory proteins. Longitudinal data suggest progression over time. DCE-MRI demonstrates increased Blood-brain barrier permeability. SUMMARY: Study design issues related to patient selection (non-NPSLE vs. NPSLE syndromes, SLE disease activity, medications) are critical for biomarker development. Regional and network structural and functional changes identified with advanced brain imaging techniques in patients with non-NPSLE may be further developed as biomarkers for cognitive and mood disorders attributable to SLE-related mechanisms
- …