12 research outputs found

    Barometric pumping of a fractured porous medium

    Get PDF
    International audienceBarometric pumping plays a crucial role in the release of trace gases from fractured porous media to the atmosphere, and it requires a rigorous and complete modeling in order to go beyond the approximate schemes available in the literature. Therefore, a coupled set of convection and convection-diffusion equations for a slightly compressible fluid in unsteady conditions should be solved. The numerical methodology is presented, and it is applied to conditions close to the ones of the Roselend Natural Laboratory (France). The precision of the code is assessed and the mechanism of barometric pumping is explained. The usual schematization by simple vertical fractures is shown to be only qualitative. Finally, barometric pumping is shown to be efficient in a narrow range of parameter values; its efficiency is a decreasing function of the matrix porosity and of the fracture density

    Quantification and Prediction of the 3D Pore Network Evolution in Carbonate Reservoir Rocks Quantification et prĂ©diction de l’évolution d’un rĂ©seau 3D de pores dans des roches rĂ©servoir de carbonates

    No full text
    This study presents an integrated approach that allows the reconstruction and prediction of 3D pore structure modifications and porosity/permeability development throughout carbonate diagenesis. Reactive Pore Network Models (PNM-R) can predict changes in the transport properties of porous media, resulting from dissolution/cementation phenomena. The validity and predictability of these models however depend on the representativeness of the equivalent pore networks used and on the equations and parameters used to model the diagenetic events. The developed approach is applied to a real case of a dolostone rock of the Middle East Arab Formation. Standard 2D microscopy shows that the main process affecting the reservoir quality is dolomitisation, followed by porosity enhancement due to dolomite dissolution and secondary porosity destruction by cementation of late diagenetic anhydrite. X-ray ÎŒ-CT allows quantifying the 3D volume and distribution of the different sample constituents. Results are compared with lab measurements. Equivalent pore networks before dolomite dissolution and prior to late anhydrite precipitation are reconstructed and used to simulate the porosity, permeability characteristics at these diagenetic steps. Using these 3D pore structures, PNM-R can trace plausible porosity-permeability evolution paths between these steps. The flow conditions and reaction rates obtained by geochemical reaction path modeling can be used as reference to define PNM-R model parameters. The approach can be used in dynamic rock typing and the upscaling of petrophysical properties, necessary for reservoir modeling. Cette Ă©tude prĂ©sente une approche intĂ©grĂ©e qui permet la reconstruction et la prĂ©diction des modifications de structure 3D de pores ainsi que le dĂ©veloppement de la porositĂ©/permĂ©abilitĂ© tout au long de la diagenĂšse des carbonates. Des modĂšles de rĂ©seau de pores rĂ©actifs peuvent prĂ©dire les changements en matiĂšre de propriĂ©tĂ©s de transport de milieux poreux, rĂ©sultant des phĂ©nomĂšnes de dissolution/cimentation. La validitĂ© et prĂ©dictibilitĂ© de ces modĂšles dĂ©pendent toutefois de la reprĂ©sentativitĂ© des rĂ©seaux de pores Ă©quivalents utilisĂ©s et des Ă©quations et paramĂštres utilisĂ©s pour modĂ©liser les Ă©vĂ©nements diagĂ©nĂ©tiques. L’approche dĂ©veloppĂ©e est appliquĂ©e au cas rĂ©el d’une roche dolomitique de la formation arabe moyen orientale. La microscopie 2D standard montre que le processus principal affectant la qualitĂ© de rĂ©servoir consiste en la dolomitisation, suivie d’un renforcement de la porositĂ© dĂ» Ă  une dissolution de la dolomie et Ă  une destruction de la porositĂ© secondaire par cimentation de l’anhydrite diagĂ©nĂ©tique tardive. La microtomographie par rayons X informatisĂ©e (X-rayÎŒ-CT; X-ray computer (micro)tomography) permet de quantifier le volume et la distribution en 3D des diffĂ©rents constituants d’échantillon. Les rĂ©sultats sont comparĂ©s avec les mesures de laboratoire. Des rĂ©seaux de pores Ă©quivalents avant la dissolution dolomitique et prĂ©alablement Ă  la prĂ©cipitation d’anhydrite tardive sont reconstruits et utilisĂ©s pour simuler les caractĂ©ristiques de porositĂ©, de permĂ©abilitĂ© lors de ces Ă©tapes diagĂ©nĂ©tiques. En utilisant ces structures 3D de pores, la PNM-R (Pore Network Modeling Reactive; modĂ©lisation rĂ©active de rĂ©seau de pores) peut suivre les voies d’évolution plausible de porositĂ©permĂ©abilitĂ© entre ces Ă©tapes. Les conditions d’écoulement et les vitesses de rĂ©action obtenues par modĂ©lisation des voies de rĂ©action gĂ©ochimiques peuvent ĂȘtre utilisĂ©es en tant que rĂ©fĂ©rence pour dĂ©finir les paramĂštres de modĂšle de PNM-R. L’approche peut ĂȘtre utilisĂ©e pour un typage dynamique de roches et le passage Ă  une Ă©chelle supĂ©rieure de propriĂ©tĂ©s pĂ©trophysiques, nĂ©cessaires pour la modĂ©lisation de rĂ©servoir

    Quantification and Prediction of the 3D Pore Network Evolution in Carbonate Reservoir Rocks

    No full text
    This study presents an integrated approach that allows the reconstruction and prediction of 3D pore structure modifications and porosity/permeability development throughout carbonate diagenesis. Reactive Pore Network Models (PNM-R) can predict changes in the transport properties of porous media, resulting from dissolution/cementation phenomena. The validity and predictability of these models however depend on the representativeness of the equivalent pore networks used and on the equations and parameters used to model the diagenetic events. The developed approach is applied to a real case of a dolostone rock of the Middle East Arab Formation. Standard 2D microscopy shows that the main process affecting the reservoir quality is dolomitisation, followed by porosity enhancement due to dolomite dissolution and secondary porosity destruction by cementation of late diagenetic anhydrite. X-ray Ό-CT allows quantifying the 3D volume and distribution of the different sample constituents. Results are compared with lab measurements. Equivalent pore networks before dolomite dissolution and prior to late anhydrite precipitation are reconstructed and used to simulate the porosity, permeability characteristics at these diagenetic steps. Using these 3D pore structures, PNM-R can trace plausible porosity-permeability evolution paths between these steps. The flow conditions and reaction rates obtained by geochemical reaction path modeling can be used as reference to define PNM-R model parameters. The approach can be used in dynamic rock typing and the upscaling of petrophysical properties, necessary for reservoir modeling

    Ethique du partenariat dans la recherche en santé dans les pays du Sud : des doctorant-e-s en apprentissage

    No full text
    Face Ă  des processus Ă©pidĂ©miques mondiaux qui nĂ©cessitent et entraĂźnent des recherches simultanĂ©ment dans plusieurs pays et Ă  l'existence de communautĂ©s scientifiques de plus en plus structurĂ©es, notamment dans les pays du Sud ; la mise en place de partenariats entre chercheurs, dĂ©cideurs, responsables locaux et communautĂ©s du Nord et du Sud s'est imposĂ©e. Cet essai a pour objectifs de : 1) prĂ©senter le contexte et les problĂ©matiques liĂ©s Ă  la recherche dans le cadre de partenariats Nord-Sud ; 2) dĂ©crire le dĂ©veloppement des rĂ©ponses adoptĂ©es pour amĂ©liorer la prise en compte des aspects Ă©thiques ; 3) discuter de la place actuelle des jeunes chercheurs Ă  l'Ăšre du multipartenariat et partager les constats et les rĂ©flexions de doctorant-e-s d'une mĂȘme unitĂ© de recherche

    Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    Get PDF
    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes
    corecore