752 research outputs found

    Plant Extracts, Energy, and Immune Modulation in Broilers

    Get PDF
    This chapter presents information obtained from experiments involving male Ross 308 broiler chickens on the effects of a standardised combination of plant extracts (PE) including carvacrol, cinnamaldehyde and capsicum oleoresin, on bird performance, hepatic antioxidant concentration and immunomodulation. Birds were reared under industry-recognised environments and were fed one of four diets. There were two control diets based on either wheat or maize, formulated to be iso-energetic and iso-nitrogenic. The other two diets were the control diets supplemented with 100 g per tonne of PE, respectively. Feeding PE improved dietary feed efficiency, dietary net energy and hepatic antioxidant contents of the birds, but did not change dietary metabolisable energy (ME). Overall, feeding PE reduced the mRNA transcript levels of three cytokines (IL-12B, IFN-G, and IL-6) and the marker CD 40 LG in caecal tonsils. Dietary PE may maximise the nutritional value of feed through improving gut health by reducing intestinal inflammation. Their mode of action is associated with improved dietary energy availability, immune status and hepatic antioxidant contents of the birds. However, studies that have focused solely on the effect of PE on ME alone may not have detected their full benefit to improve the efficiency of broiler meat production

    Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants

    Get PDF
    HYPOTHESES: Significant variability persists in speech recognition outcomes in adults with cochlear implants (CIs). Sensory ("bottom-up") and cognitive-linguistic ("top-down") processes help explain this variability. However, the interactions of these bottom-up and top-down factors remain unclear. One hypothesis was tested: top-down processes would contribute differentially to speech recognition, depending on the fidelity of bottom-up input. BACKGROUND: Bottom-up spectro-temporal processing, assessed using a Spectral-Temporally Modulated Ripple Test (SMRT), is associated with CI speech recognition outcomes. Similarly, top-down cognitive-linguistic skills relate to outcomes, including working memory capacity, inhibition-concentration, speed of lexical access, and nonverbal reasoning. METHODS: Fifty-one adult CI users were tested for word and sentence recognition, along with performance on the SMRT and a battery of cognitive-linguistic tests. The group was divided into "low-," "intermediate-," and "high-SMRT" groups, based on SMRT scores. Separate correlation analyses were performed for each subgroup between a composite score of cognitive-linguistic processing and speech recognition. RESULTS: Associations of top-down composite scores with speech recognition were not significant for the low-SMRT group. In contrast, these associations were significant and of medium effect size (Spearman's rho = 0.44-0.46) for two sentence types for the intermediate-SMRT group. For the high-SMRT group, top-down scores were associated with both word and sentence recognition, with medium to large effect sizes (Spearman's rho = 0.45-0.58). CONCLUSIONS: Top-down processes contribute differentially to speech recognition in CI users based on the quality of bottom-up input. Findings have clinical implications for individualized treatment approaches relying on bottom-up device programming or top-down rehabilitation approaches

    High- and Low-Performing Adult Cochlear Implant Users on High-Variability Sentence Recognition:Differences in Auditory Spectral Resolution and Neurocognitive Functioning

    Get PDF
    Background Postlingually deafened adult cochlear implant (CI) users routinely display large individual differences in the ability to recognize and understand speech, especially in adverse listening conditions. Although individual differences have been linked to several sensory ("bottom-up'') and cognitive ("top-down'') factors, little is currently known about the relative contributions of these factors in high- and low-performing CI users. Purpose The aim of the study was to investigate differences in sensory functioning and neurocognitive functioning between high- and low-performing CI users on the Perceptually Robust English Sentence Test Open-set (PRESTO), a high-variability sentence recognition test containing sentence materials produced by multiple male and female talkers with diverse regional accents. Research Design CI users with accuracy scores in the upper (HiPRESTO) or lower quartiles (LoPRESTO) on PRESTO in quiet completed a battery of behavioral tasks designed to assess spectral resolution and neurocognitive functioning. Study Sample Twenty-one postlingually deafened adult CI users, with 11 HiPRESTO and 10 LoPRESTO participants. Data Collection and Analysis A discriminant analysis was carried out to determine the extent to which measures of spectral resolution and neurocognitive functioning discriminate HiPRESTO and LoPRESTO CI users. Auditory spectral resolution was measured using the Spectral-Temporally Modulated Ripple Test (SMRT). Neurocognitive functioning was assessed with visual measures of working memory (digit span), inhibitory control (Stroop), speed of lexical/phonological access (Test of Word Reading Efficiency), and nonverbal reasoning (Raven's Progressive Matrices). Results HiPRESTO and LoPRESTO CI users were discriminated primarily by performance on the SMRT and secondarily by the Raven's test. No other neurocognitive measures contributed substantially to the discriminant function. Conclusions High- and low-performing CI users differed by spectral resolution and, to a lesser extent, nonverbal reasoning. These findings suggest that the extreme groups are determined by global factors of richness of sensory information and domain-general, nonverbal intelligence, rather than specific neurocognitive processing operations related to speech perception and spoken word recognition. Thus, although both bottom-up and top-down information contribute to speech recognition performance, low-performing CI users may not be sufficiently able to rely on neurocognitive skills specific to speech recognition to enhance processing of spectrally degraded input in adverse conditions involving high talker variability

    Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy

    Full text link
    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni2.16_{2.16}Mn0.84_{0.84}Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity ρ\rho and magnetization MM. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, (ρ5Mρ7M)/ρ5M15(\rho_{\mathrm{5M}} - \rho_{\mathrm{7M}})/\rho _{\mathrm{5M}} \approx 15%, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase to the monoclinic 5M martensitic phase. We assume that this significant difference in ρ\rho between the martensitic phases is accounted for by nesting features of the Fermi surface. It is also suggested that the nesting hypothesis can explain the uncommon behavior of the resistivity at the martensitic transition, observed in stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX

    Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II

    Get PDF
    OBJECTIVES: Despite the importance of verbal learning and memory in speech and language processing, this domain of cognitive functioning has been virtually ignored in clinical studies of hearing loss and cochlear implants in both adults and children. In this article, we report the results of two studies that used a newly developed visually based version of the California Verbal Learning Test-Second Edition (CVLT-II), a well-known normed neuropsychological measure of verbal learning and memory. DESIGN: The first study established the validity and feasibility of a computer-controlled visual version of the CVLT-II, which eliminates the effects of audibility of spoken stimuli, in groups of young normal-hearing and older normal-hearing (ONH) adults. A second study was then carried out using the visual CVLT-II format with a group of older postlingually deaf experienced cochlear implant (ECI) users (N = 25) and a group of ONH controls (N = 25) who were matched to ECI users for age, socioeconomic status, and nonverbal IQ. In addition to the visual CVLT-II, subjects provided data on demographics, hearing history, nonverbal IQ, reading fluency, vocabulary, and short-term memory span for visually presented digits. ECI participants were also tested for speech recognition in quiet. RESULTS: The ECI and ONH groups did not differ on most measures of verbal learning and memory obtained with the visual CVLT-II, but deficits were identified in ECI participants that were related to recency recall, the buildup of proactive interference, and retrieval-induced forgetting. Within the ECI group, nonverbal fluid IQ, reading fluency, and resistance to the buildup of proactive interference from the CVLT-II consistently predicted better speech recognition outcomes. CONCLUSIONS: Results from this study suggest that several underlying foundational neurocognitive abilities are related to core speech perception outcomes after implantation in older adults. Implications of these findings for explaining individual differences and variability and predicting speech recognition outcomes after implantation are discussed

    Word and Nonword Reading Efficiency in Postlingually Deafened Adult Cochlear Implant Users

    Get PDF
    HYPOTHESIS: This study tested the hypotheses that 1) experienced adult cochlear implants (CI) users demonstrate poorer reading efficiency relative to normal-hearing controls, 2) reading efficiency reflects basic, underlying neurocognitive skills, and 3) reading efficiency relates to speech recognition outcomes in CI users. BACKGROUND: Weak phonological processing skills have been associated with poor speech recognition outcomes in postlingually deaf adult CI users. Phonological processing can be captured in nonauditory measures of reading efficiency, which may have wide use in patients with hearing loss. This study examined reading efficiency in adults CI users, and its relation to speech recognition outcomes. METHODS: Forty-eight experienced, postlingually deaf adult CI users (ECIs) and 43 older age-matched peers with age-normal hearing (ONHs) completed the Test of Word Reading Efficiency (TOWRE-2), which measures word and nonword reading efficiency. Participants also completed a battery of nonauditory neurocognitive measures and auditory sentence recognition tasks. RESULTS: ECIs and ONHs did not differ in word (ECIs: M = 78.2, SD = 11.4; ONHs: M = 83.3, SD = 10.2) or nonword reading efficiency (ECIs: M = 42.0, SD = 11.2; ONHs: M = 43.7, SD = 10.3). For ECIs, both scores were related to untimed word reading with moderate to strong effect sizes (r = 0.43–0.69), but demonstrated differing relations with other nonauditory neurocognitive measures with weak to moderate effect sizes (word: r = 0.11–0.44; nonword: r = (−)0.15 to (−)0.42). Word reading efficiency was moderately related to sentence recognition outcomes in ECIs (r = 0.36–0.40). CONCLUSION: Findings suggest that postlingually deaf adult CI users demonstrate neither impaired word nor nonword reading efficiency, and these measures reflect different underlying mechanisms involved in language processing. The relation between sentence recognition and word reading efficiency, a measure of lexical access speed, suggests that this measure may be useful for explaining outcome variability in adult CI users

    Excitation of self-localized spin-wave "bullets" by spin-polarized current in in-plane magnetized magnetic nano-contacts: a micromagnetic study

    Full text link
    It was shown by micromagnetic simulation that a current-driven in-plane magnetized magnetic nano-contact, besides a quasi-linear propagating ("Slonczewski") spin wave mode, can also support a nonlinear self-localized spin wave "bullet" mode that exists in a much wider range of bias currents. The frequency of the "bullet" mode lies below the spectrum of linear propagating spin waves, which makes this mode evanescent and determines its spatial localization. The threshold current for the excitation of the self-localized "bullet" is substantially lower than for the linear propagating mode, but finite-amplitude initial perturbations of magnetization are necessary to generate a "bullet" in our numerical simulations, where thermal fluctuations are neglected. Consequently, in these simulations the hysteretic switching between the propagating and localized spin wave modes is found when the bias current is varied.Comment: 27 pages, 5 figures, paper submitted to Physical Review

    Multi-Zone Shell Model for Turbulent Wall Bounded Flows

    Full text link
    We suggested a \emph{Multi-Zone Shell} (MZS) model for wall-bounded flows accounting for the space inhomogeneity in a "piecewise approximation", in which cross-section area of the flow, SS, is subdivided into "jj-zones". The area of the first zone, responsible for the core of the flow, S1S/2S_1\simeq S/2, and areas of the next jj-zones, SjS_j, decrease towards the wall like Sj2jS_j\propto 2^{-j}. In each jj-zone the statistics of turbulence is assumed to be space homogeneous and is described by the set of "shell velocities" unj(t)u_{nj}(t) for turbulent fluctuations of the scale 2n\propto 2^{-n}. The MZS-model includes a new set of complex variables, Vj(t)V_j(t), j=1,2,...j=1,2,... \infty, describing the amplitudes of the near wall coherent structures of the scale sj2js_j\sim 2^{-j} and responsible for the mean velocity profile. Suggested MZS-equations of motion for unj(t)u_{nj}(t) and Vj(t)V_j(t) preserve the actual conservations laws (energy, mechanical and angular momenta), respect the existing symmetries (including Galilean and scale invariance) and account for the type of the non-linearity in the Navier-Stokes equation, dimensional reasoning, etc. The MZS-model qualitatively describes important characteristics of the wall bounded turbulence, e.g., evolution of the mean velocity profile with increasing Reynolds number, \RE, from the laminar profile towards the universal logarithmic profile near the flat-plane boundary layer as \RE\to \infty.Comment: 27 pages, 17 figs, included, PRE, submitte

    The enhancement of phase separation aspect in electron doped manganite Ca0.8Sm0.16Nd0.04MnO3

    Full text link
    The complex lanthanide doping of electron manganites results in enhancement of various phase separation effects in physical properties of these compounds. Selecting Ca0.8Sm0.16Nd0.04MnO3 as a model case we show that the first order structural phase transition from paramagnetic semi-metallic phase into anti-ferromagnetic semi-metallic phase at TS ~ 158 +- 4 K is marked by an abrupt decrease in magnetization, a step like anomaly DL/L = 10-4 in thermal expansion and large latent heat DQ = 610 J/mol. In a certain temperature range below TS, the high field magnetization exhibits hysteretic metamagnetic behavior due to field-induced first order transformation. ac-susceptibility, magnetization and resistivity data suggest rather a non-uniform state in Ca0.8Sm0.16Nd0.04MnO3 at low temperatures. The metal - insulator transition occurs at TMI ~112 +- 3 K, accompanied by a step-like increase in magnetization. These features could be ascribed to "sponging" of electrons from neighboring anti-ferromagnetic matrix by clusters undergoing the ferromagnetic ordering.Comment: submitted to J.Phys. Cond. Matte
    corecore