16,478 research outputs found

    Cluster observations of the midaltitude cusp under strong northward interplanetary magnetic field

    Get PDF
    We report on a multispacecraft cusp observation lasting more than 100 min. We determine the cusp boundary motion and reveal the effect on the cusp size of the interplanetary magnetic field (IMF) changing from southward to northward. The cusp shrinks at the beginning of the IMF rotation and it reexpands at the rate of 0.40° invariant latitude per hour under stable northward IMF. On the basis of plasma signatures inside the cusp, such as counterstreaming electrons with balanced fluxes, we propose that pulsed dual lobe reconnection operates during the time of interest. SC1 and SC4 observations suggest a long-term regular periodicity of the pulsed dual reconnection, which we estimate to be ~1–5 min. Further, the distances from the spacecraft to the reconnection site are estimated on the basis of observations from three satellites. The distance determined using SC1 and SC4 observations is ~15 RE and that determined from SC3 data is ~8 RE. The large-scale speed of the reconnection site sunward motion is ~16 km s-1. We observe also a fast motion of the reconnection site by SC1, which provides new information about the transitional phase after the IMF rotation. Finally, a statistical study of the dependency of plasma convection inside the cusp on the IMF clock angle is performed. The relationship between the cusp stagnation, the dual lobe reconnection process, and the IMF clock angle is discussed

    On the size and composition of particles in polar stratospheric clouds

    Get PDF
    Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    An X-ray and Optical Investigation of the Environments Around Nearby Radio Galaxies

    Full text link
    Investigations of the cluster environment of radio sources have not shown a correlation between radio power and degree of clustering. However, it has been demonstrated that extended X-ray luminosity and galaxy clustering do exhibit a positive correlation. This study investigates a complete sample of 25 nearby (z less than 0.06) radio galaxies which are not cataloged members of Abell clusters. The environment of these radio galaxies is studied in both the X-ray and the optical by means of the ROSAT All-Sky Survey (RASS), ROSAT pointed observations, and the Palomar optical Digitized Sky Survey (DSS). X-ray luminosities and extents are determined from the RASS, and the DSS is used to quantify the degree of clustering via the spatial two-point correlation coefficient, Bgg. Of the 25 sources, 20 are greater than sigma detections in the X-ray and 11 possessed Bgg's significantly in excess of that expected for an isolated galaxy. Adding the criterion that the X-ray emission be resolved, 10 of the radio galaxies do appear to reside in poor clusters with extended X-ray emission suggestive of the presence of an intracluster medium. Eight of these galaxies also possess high spatial correlation coefficients. Taken together, these data suggest that the radio galaxies reside in a low richness extension of the Abell clusters. The unresolved X-ray emission from the other galaxies is most likely associated with AGN phenomena. Furthermore, although the sample size is small, it appears that the environments of FR I and FR II sources differ. FR I's tend to be more frequently associated with extended X-ray emission (10 of 18), whereas FR II's are typically point sources or non-detections in the X-ray (none of the 7 sources exhibit extended X-ray emission).Comment: 28 page postscript file including figures and tables, plus one landscape table and 5 GIF figure

    Low voltage control of ferromagnetism in a semiconductor p-n junction

    Full text link
    The concept of low-voltage depletion and accumulation of electron charge in semiconductors, utilized in field-effect transistors (FETs), is one of the cornerstones of current information processing technologies. Spintronics which is based on manipulating the collective state of electron spins in a ferromagnet provides complementary technologies for reading magnetic bits or for the solid-state memories. The integration of these two distinct areas of microelectronics in one physical element, with a potentially major impact on the power consumption and scalability of future devices, requires to find efficient means for controlling magnetization electrically. Current induced magnetization switching phenomena represent a promising step towards this goal, however, they relay on relatively large current densities. The direct approach of controlling the magnetization by low-voltage charge depletion effects is seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets are separated by many orders of magnitude in their typical carrier concentrations. Here we demonstrate that this concept is viable by reporting persistent magnetization switchings induced by short electrical pulses of a few volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure

    Gravitational Wave Chirp Search: Economization of PN Matched Filter Bank via Cardinal Interpolation

    Full text link
    The final inspiral phase in the evolution of a compact binary consisting of black holes and/or neutron stars is among the most probable events that a network of ground-based interferometric gravitational wave detectors is likely to observe. Gravitational radiation emitted during this phase will have to be dug out of noise by matched-filtering (correlating) the detector output with a bank of several 10510^5 templates, making the computational resources required quite demanding, though not formidable. We propose an interpolation method for evaluating the correlation between template waveforms and the detector output and show that the method is effective in substantially reducing the number of templates required. Indeed, the number of templates needed could be a factor 4\sim 4 smaller than required by the usual approach, when the minimal overlap between the template bank and an arbitrary signal (the so-called {\it minimal match}) is 0.97. The method is amenable to easy implementation, and the various detector projects might benefit by adopting it to reduce the computational costs of inspiraling neutron star and black hole binary search.Comment: scheduled for publicatin on Phys. Rev. D 6

    Orthopaedic surgeons: as strong as an ox and almost twice as clever? Multicentre prospective comparative study

    Get PDF
    Objective To compare the intelligence and grip strength of orthopaedic surgeons and anaesthetists

    Scientific data compression for the Solar Wind Analyser onboard Solar Orbiter

    Get PDF

    Changing thoughts, changing practice: examining the delivery of a group CBT-based intervention in a school setting

    Get PDF
    Promoting mental health and well-being for children and young people in the UK has attracted increasing prominence in recent years and has been a focus for government strategy within health and education. Training and practice in educational psychology has increasingly focused on developing skills and expertise to provide therapeutic support within school contexts, at an early stage of need. One approach, Cognitive Behaviour Therapy (CBT), has been heralded as an effective, evidence-based intervention for anxiety. This research examines the factors influencing the outcomes of a group CBT-based intervention, run by an Educational Psychologist (EP), in a school setting. The findings suggest that influential variables included pupil identification, measures of change applied and the role of school staff. It is concluded that EPs can play a key role in increasing access to psychological therapies, alongside considering due caution in relation to the application of traditional clinical approaches in school contexts

    R-modes in Neutron Stars with Crusts: Turbulent Saturation, Spin-down, and Crust Melting

    Get PDF
    Rossby waves (r-modes) have been suggested as a means to regulate the spin periods of young or accreting neutron stars, and also to produce observable gravitational wave radiation. R-modes involve primarily transverse, incompressive motions of the star's fluid core. However, neutron stars gain crusts early in their lives: therefore, r-modes also imply shear in the fluid beneath the crust. We examine the criterion for this shear layer to become turbulent, and derive the rate of dissipation in the turbulent regime. Unlike dissipation from a viscous boundary layer, turbulent energy loss is nonlinear in mode energy and can therefore cause the mode to saturate at amplitudes typically much less than unity. This energy loss also reappears as heat below the crust. We study the possibility of crust melting as well as its implications for the spin evolution of low-mass X-ray binaries. Lastly, we identify some universal features of the spin evolution that may have observational consequences.Comment: 12 pages, 4 figures, submitted to Ap
    corecore