1,481 research outputs found

    Developing the Deutsch-Hayden approach to quantum mechanics

    Get PDF
    The formalism of Deutsch and Hayden is a useful tool for describing quantum mechanics explicitly as local and unitary, and therefore quantum information theory as concerning a "flow" of information between systems. In this paper we show that these physical descriptions of flow are unique, and develop the approach further to include the measurement interaction and mixed states. We then give an analysis of entanglement swapping in this approach, showing that it does not in fact contain non-local effects or some form of superluminal signalling.Comment: 14 pages. Added section on entanglement swappin

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Secure gated detection scheme for quantum cryptography

    Full text link
    Several attacks have been proposed on quantum key distribution systems with gated single-photon detectors. The attacks involve triggering the detectors outside the center of the detector gate, and/or using bright illumination to exploit classical photodiode mode of the detectors. Hence a secure detection scheme requires two features: The detection events must take place in the middle of the gate, and the detector must be single-photon sensitive. Here we present a technique called bit-mapped gating, which is an elegant way to force the detections in the middle of the detector gate by coupling detection time and quantum bit error rate. We also discuss how to guarantee single-photon sensitivity by directly measuring detector parameters. Bit-mapped gating also provides a simple way to measure the detector blinding parameter in security proofs for quantum key distribution systems with detector efficiency mismatch, which up until now has remained a theoretical, unmeasurable quantity. Thus if single-photon sensitivity can be guaranteed within the gates, a detection scheme with bit-mapped gating satisfies the assumptions of the current security proofs.Comment: 7 pages, 3 figure

    Negative Quasi-Probability as a Resource for Quantum Computation

    Full text link
    A central problem in quantum information is to determine the minimal physical resources that are required for quantum computational speedup and, in particular, for fault-tolerant quantum computation. We establish a remarkable connection between the potential for quantum speed-up and the onset of negative values in a distinguished quasi-probability representation, a discrete analog of the Wigner function for quantum systems of odd dimension. This connection allows us to resolve an open question on the existence of bound states for magic-state distillation: we prove that there exist mixed states outside the convex hull of stabilizer states that cannot be distilled to non-stabilizer target states using stabilizer operations. We also provide an efficient simulation protocol for Clifford circuits that extends to a large class of mixed states, including bound universal states.Comment: 15 pages v4: This is a major revision. In particular, we have added a new section detailing an explicit extension of the Gottesman-Knill simulation protocol to deal with positively represented states and measurement (even when these are non-stabilizer). This paper also includes significant elaboration on the two main results of the previous versio

    Remote information concentration using a bound entangled state

    Get PDF
    Remote information concentration, the reverse process of quantum telecloning, is presented. In this scheme, quantum information originally from a single qubit, but now distributed into three spatially separated qubits, is remotely concentrated back to a single qubit via an initially shared entangled state without performing any global operations. This entangled state is an unlockable bound entangled state and we analyze its properties.Comment: 4 pages, 2 figure

    Classical simulation of measurement-based quantum computation on higher-genus surface-code states

    Full text link
    We consider the efficiency of classically simulating measurement-based quantum computation on surface-code states. We devise a method for calculating the elements of the probability distribution for the classical output of the quantum computation. The operational cost of this method is polynomial in the size of the surface-code state, but in the worst case scales as 22g2^{2g} in the genus gg of the surface embedding the code. However, there are states in the code space for which the simulation becomes efficient. In general, the simulation cost is exponential in the entanglement contained in a certain effective state, capturing the encoded state, the encoding and the local post-measurement states. The same efficiencies hold, with additional assumptions on the temporal order of measurements and on the tessellations of the code surfaces, for the harder task of sampling from the distribution of the computational output.Comment: 21 pages, 13 figure

    Full-field implementation of a perfect eavesdropper on a quantum cryptography system

    Full text link
    Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.Comment: Revised after editorial and peer-review feedback. This version is published in Nat. Commun. 8 pages, 6 figures, 1 tabl

    Optimality of private quantum channels

    Full text link
    We addressed the question of optimality of private quantum channels. We have shown that the Shannon entropy of the classical key necessary to securely transfer the quantum information is lower bounded by the entropy exchange of the private quantum channel E\cal E and von Neumann entropy of the ciphertext state ϱ(0)\varrho^{(0)}. Based on these bounds we have shown that decomposition of private quantum channels into orthogonal unitaries (if exists) is optimizing the entropy. For non-ancillary single qubit PQC we have derived the optimal entropy for arbitrary set of plaintexts. In particular, we have shown that except when the (closure of the) set of plaintexts contains all states, one bit key is sufficient. We characterized and analyzed all the possible single qubit private quantum channels for arbitrary set of plaintexts. For the set of plaintexts consisting of all qubit states we have characterized all possible approximate private quantum channels and we have derived the relation between the security parameter and the corresponding minimal entropy.Comment: no commen

    Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single Photon Detectors

    Full text link
    The security of quantum key distribution (QKD) can easily be obscured if the eavesdropper can utilize technical imperfections of the actual implementation. Here we describe and experimentally demonstrate a very simple but highly effective attack which even does not need to intercept the quantum channel at all. Only by exploiting the dead time effect of single photon detectors the eavesdropper is able to gain (asymptotically) full information about the generated keys without being detected by state-of-the-art QKD protocols. In our experiment, the eavesdropper inferred up to 98.8% of the key correctly, without increasing the bit error rate between Alice and Bob significantly. Yet, we find an evenly simple and effective countermeasure to inhibit this and similar attacks

    Exchange Interaction Between Three and Four Coupled Quantum Dots: Theory and Applications to Quantum Computing

    Full text link
    Several prominent proposals have suggested that spins of localized electrons could serve as quantum computer qubits. The exchange interaction has been invoked as a means of implementing two qubit gates. In this paper, we analyze the strength and form of the exchange interaction under relevant conditions. We find that, when several spins are engaged in mutual interactions, the quantitative strengths or even qualitative forms of the interactions can change. It is shown that the changes can be dramatic within a Heitler-London model. Hund-Mulliken calculations are also presented, and support the qualititative conclusions from the Heitler-London model. The effects need to be considered in spin-based quantum computer designs, either as a source of gate error to be overcome or a new interaction to be exploited.Comment: 16 pages, 16 figures. v3: Added Hund-Mulliken calculations in 3-dots case. A few small corrections. This version submitted to PR
    corecore