1,481 research outputs found
Developing the Deutsch-Hayden approach to quantum mechanics
The formalism of Deutsch and Hayden is a useful tool for describing quantum
mechanics explicitly as local and unitary, and therefore quantum information
theory as concerning a "flow" of information between systems. In this paper we
show that these physical descriptions of flow are unique, and develop the
approach further to include the measurement interaction and mixed states. We
then give an analysis of entanglement swapping in this approach, showing that
it does not in fact contain non-local effects or some form of superluminal
signalling.Comment: 14 pages. Added section on entanglement swappin
Preparing encoded states in an oscillator
Recently a scheme has been proposed for constructing quantum error-correcting
codes that embed a finite-dimensional code space in the infinite-dimensional
Hilbert space of a system described by continuous quantum variables. One of the
difficult steps in this scheme is the preparation of the encoded states. We
show how these states can be generated by coupling a continuous quantum
variable to a single qubit. An ion trap quantum computer provides a natural
setting for a continuous system coupled to a qubit. We discuss how encoded
states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe
Secure gated detection scheme for quantum cryptography
Several attacks have been proposed on quantum key distribution systems with
gated single-photon detectors. The attacks involve triggering the detectors
outside the center of the detector gate, and/or using bright illumination to
exploit classical photodiode mode of the detectors. Hence a secure detection
scheme requires two features: The detection events must take place in the
middle of the gate, and the detector must be single-photon sensitive. Here we
present a technique called bit-mapped gating, which is an elegant way to force
the detections in the middle of the detector gate by coupling detection time
and quantum bit error rate. We also discuss how to guarantee single-photon
sensitivity by directly measuring detector parameters. Bit-mapped gating also
provides a simple way to measure the detector blinding parameter in security
proofs for quantum key distribution systems with detector efficiency mismatch,
which up until now has remained a theoretical, unmeasurable quantity. Thus if
single-photon sensitivity can be guaranteed within the gates, a detection
scheme with bit-mapped gating satisfies the assumptions of the current security
proofs.Comment: 7 pages, 3 figure
Negative Quasi-Probability as a Resource for Quantum Computation
A central problem in quantum information is to determine the minimal physical
resources that are required for quantum computational speedup and, in
particular, for fault-tolerant quantum computation. We establish a remarkable
connection between the potential for quantum speed-up and the onset of negative
values in a distinguished quasi-probability representation, a discrete analog
of the Wigner function for quantum systems of odd dimension. This connection
allows us to resolve an open question on the existence of bound states for
magic-state distillation: we prove that there exist mixed states outside the
convex hull of stabilizer states that cannot be distilled to non-stabilizer
target states using stabilizer operations. We also provide an efficient
simulation protocol for Clifford circuits that extends to a large class of
mixed states, including bound universal states.Comment: 15 pages v4: This is a major revision. In particular, we have added a
new section detailing an explicit extension of the Gottesman-Knill simulation
protocol to deal with positively represented states and measurement (even
when these are non-stabilizer). This paper also includes significant
elaboration on the two main results of the previous versio
Remote information concentration using a bound entangled state
Remote information concentration, the reverse process of quantum telecloning,
is presented. In this scheme, quantum information originally from a single
qubit, but now distributed into three spatially separated qubits, is remotely
concentrated back to a single qubit via an initially shared entangled state
without performing any global operations. This entangled state is an unlockable
bound entangled state and we analyze its properties.Comment: 4 pages, 2 figure
Classical simulation of measurement-based quantum computation on higher-genus surface-code states
We consider the efficiency of classically simulating measurement-based
quantum computation on surface-code states. We devise a method for calculating
the elements of the probability distribution for the classical output of the
quantum computation. The operational cost of this method is polynomial in the
size of the surface-code state, but in the worst case scales as in the
genus of the surface embedding the code. However, there are states in the
code space for which the simulation becomes efficient. In general, the
simulation cost is exponential in the entanglement contained in a certain
effective state, capturing the encoded state, the encoding and the local
post-measurement states. The same efficiencies hold, with additional
assumptions on the temporal order of measurements and on the tessellations of
the code surfaces, for the harder task of sampling from the distribution of the
computational output.Comment: 21 pages, 13 figure
Full-field implementation of a perfect eavesdropper on a quantum cryptography system
Quantum key distribution (QKD) allows two remote parties to grow a shared
secret key. Its security is founded on the principles of quantum mechanics, but
in reality it significantly relies on the physical implementation.
Technological imperfections of QKD systems have been previously explored, but
no attack on an established QKD connection has been realized so far. Here we
show the first full-field implementation of a complete attack on a running QKD
connection. An installed eavesdropper obtains the entire 'secret' key, while
none of the parameters monitored by the legitimate parties indicate a security
breach. This confirms that non-idealities in physical implementations of QKD
can be fully practically exploitable, and must be given increased scrutiny if
quantum cryptography is to become highly secure.Comment: Revised after editorial and peer-review feedback. This version is
published in Nat. Commun. 8 pages, 6 figures, 1 tabl
Optimality of private quantum channels
We addressed the question of optimality of private quantum channels. We have
shown that the Shannon entropy of the classical key necessary to securely
transfer the quantum information is lower bounded by the entropy exchange of
the private quantum channel and von Neumann entropy of the ciphertext
state . Based on these bounds we have shown that decomposition
of private quantum channels into orthogonal unitaries (if exists) is optimizing
the entropy. For non-ancillary single qubit PQC we have derived the optimal
entropy for arbitrary set of plaintexts. In particular, we have shown that
except when the (closure of the) set of plaintexts contains all states, one bit
key is sufficient. We characterized and analyzed all the possible single qubit
private quantum channels for arbitrary set of plaintexts. For the set of
plaintexts consisting of all qubit states we have characterized all possible
approximate private quantum channels and we have derived the relation between
the security parameter and the corresponding minimal entropy.Comment: no commen
Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single Photon Detectors
The security of quantum key distribution (QKD) can easily be obscured if the
eavesdropper can utilize technical imperfections of the actual implementation.
Here we describe and experimentally demonstrate a very simple but highly
effective attack which even does not need to intercept the quantum channel at
all. Only by exploiting the dead time effect of single photon detectors the
eavesdropper is able to gain (asymptotically) full information about the
generated keys without being detected by state-of-the-art QKD protocols. In our
experiment, the eavesdropper inferred up to 98.8% of the key correctly, without
increasing the bit error rate between Alice and Bob significantly. Yet, we find
an evenly simple and effective countermeasure to inhibit this and similar
attacks
Exchange Interaction Between Three and Four Coupled Quantum Dots: Theory and Applications to Quantum Computing
Several prominent proposals have suggested that spins of localized electrons
could serve as quantum computer qubits. The exchange interaction has been
invoked as a means of implementing two qubit gates. In this paper, we analyze
the strength and form of the exchange interaction under relevant conditions. We
find that, when several spins are engaged in mutual interactions, the
quantitative strengths or even qualitative forms of the interactions can
change. It is shown that the changes can be dramatic within a Heitler-London
model. Hund-Mulliken calculations are also presented, and support the
qualititative conclusions from the Heitler-London model. The effects need to be
considered in spin-based quantum computer designs, either as a source of gate
error to be overcome or a new interaction to be exploited.Comment: 16 pages, 16 figures. v3: Added Hund-Mulliken calculations in 3-dots
case. A few small corrections. This version submitted to PR
- …