838 research outputs found

    Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct

    Get PDF
    We tested whether severe congestive heart failure (CHF), a condition associated with excess free-water retention, is accompanied by altered regulation of the vasopressin-regulated water channel, aquaporin-2 (AQP2), in the renal collecting duct. CHF was induced by left coronary artery ligation. Compared with sham-operated animals, rats with CHF had severe heart failure with elevated left ventricular end-diastolic pressures (LVEDP): 26.9 ± 3.4 vs. 4.1 ± 0.3 mmHg, and reduced plasma sodium concentrations (142.2 ± 1.6 vs. 149.1 ± 1.1 mEq/liter). Quantitative immunoblotting of total kidney membrane fractions revealed a significant increase in AQP2 expression in animals with CHF (267 ± 53%, n=12) relative to sham-operated controls (100 ± 13%, n=14). In contrast, immunoblotting demonstrated a lack of an increase in expression of AQP1 and AQP3 water channel expression, indicating that the effect on AQP2 was selective.Furthermore, postinfarction animals without LVEDP elevation or plasma Na reduction showed no increase in AQP2 expression (121 ± 28% of sham levels, n=6). Immunocytochemistry and immunoelectron microscopy demonstrated very abundant labeling of the apical plasma membrane and relatively little labeling of intracellular vesicles in collecting duct cells from rats with severe CHF, consistent with enhanced trafficking of AQP2 to the apical plasma membrane. The selective increase in AQP2 expression and enhanced plasma membrane targeting provide an explanation for the development of water retention and hyponatremia in severe CHF

    Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media

    Get PDF
    International audienceWe have used ion irradiation to tune switching field and switching field distribution ͑SFD͒ in polycrystalline Co/Pd multilayer-based bit pattern media. Light He + ion irradiation strongly decreases perpendicular magnetic anisotropy amplitude due to Co/Pd interface intermixing, while the granular structure, i.e., the crystalline anisotropy, remains unchanged. In dot arrays, the anisotropy reduction leads to a decrease in coercivity ͑H C ͒ but also to a strong broadening of the normalized SFD/ H C ͑in percentage͒, since the relative impact of misaligned grains is enhanced. Our experiment thus confirms the major role of misorientated grains in SFD of nanodevice arrays. Today a major research effort in magnetism is targeted toward achieving ultrahigh density data storage with nano-scale magnets. Spin-transfer magnetic random access memory ͑spin-RAM͒ and bit patterned media ͑BPM͒ technologies are currently part of the most promising media. The implementation of both of these technologies relies on achieving in-detail physical understanding and control of the magnetization reversal mechanism in each nanoscopic individual bit to ensure reproducibility of the bit properties in order to avoid write errors. Perpendicular magnetic anisotropy ͑PMA͒ materials, such as polycrystalline Co/Pd, Co/Pt, and Co/Ni multilayers, are believed to be promising materials for both spin-RAM and BPM applications. 1–4 Indeed, they have a well defined high amplitude uniaxial anisotropy that provides good thermal stability while offering low critical current in spin-transfer devices 2 and tunable switching fields in BPM.

    Modeling semi-conductor thermal properties. The dispersion role

    Full text link
    We study heat transport in semiconductor nanostructures by solving the Boltzmann Transport Equation (BTE) by means of the Discrete Ordinate Method (DOM). Relaxation time and phase and group velocitiy spectral dependencies are taken into account. The Holland model of phonon relaxation time is revisited and recalculated from dispersion relations (taken in litterature) in order to match bulk silicon and germanium values. This improved model is then used to predict silicon nanowire and nanofilm thermal properties in both ballistic and mesoscopic regimes

    Informing targeted HIV self-testing: a protocol for discrete choice experiments in Malawi, Zambia and Zimbabwe

    Get PDF
    Introduction HIV self-testing (HIVST) is a new approach to HIV testing where a person collects his or her own specimen, performs an HIV test and interprets the result, either alone or with someone he or she trusts. It is becoming increasingly relevant as a complement to standard-of-care HIV testing and is now recommended by the World Health Organization. Few studies have explored user preferences around HIVST service delivery and optimal models for increasing uptake and linkage to care, particularly among hard-to-reach populations. This paper describes an ongoing study that uses discrete choice experiments (DCE) to identify key HIVST service characteristics that drive people’s willingness to self-test for HIV and link to care, measure the relative strength of user preferences, and explore preference heterogeneity in Southern Africa. Method and Analysis Two DCEs – one on HIVST delivery and one on linkage to care after a positive self-test – are being administered in Malawi, Zambia and Zimbabwe. The designs in each country were informed by a qualitative study, which identified key HIVST service characteristics that influence user decision-making and refined scenario presentations and illustrations. Following data collection, DCE data will be analysed using a multinomial logit model as well as latent class, nested logit and generalised mixed models to examine heterogeneity in preferences by sociodemographic background, HIV testing experience and sexual behaviour. Ethics and dissemination The study has been approved by the College of Medicine Research Ethics Committee in Malawi, the Biomedical Ethics Committee of the University of Zambia, the Medical Research Council of Zimbabwe and the Research Ethics Committee of the London School of Hygiene and Tropical Medicine. Findings from the study will be presented at international conferences and in peer-reviewed journals. The results will help inform the HIVST implementation strategy in Southern Africa, particularly among populations underserved by standard-of-care services, such as men and young women

    Electrical Switching Dynamics in Circular and Rectangular Ge2Sb2Te5 Nanopillar Phase Change Memory Devices

    Full text link
    We have measured the critical phase change conditions induced by electrical pulses in Ge2Sb2Te5 nanopillar phase change memory devices by constructing a comprehensive resistance map as a function of pulse parameters (width, amplitude and trailing edge). Our measurements reveal that the heating scheme and the details of the contact geometry play the dominant role in determining the final phase composition of the device such that a non-uniform heating scheme promotes partial amorphization/crystallization for a wide range of pulse parameters enabling multiple resistance levels for data storage applications. Furthermore we find that fluctuations in the snap-back voltage and set/reset resistances in repeated switching experiments are related to the details of the current distribution such that a uniform current injection geometry (i.e. circular contact) favors more reproducible switching parameters. This shows that possible geometrical defects in nanoscale phase change memory devices may play an essential role in the performance of the smallest possible devices through modification of the exact current distribution in the active chalcogenide layer. We present a three-dimensional finite element model of the electro-thermal physics to provide insights into the underlying physical mechanisms of the switching dynamics as well as to quantitatively account for the scaling behaviour of the switching currents in both circular and rectangular contact geometries. The calculated temporal evolution of the heat distribution within the pulse duration shows distinct features in rectangular contacts providing evidence for locally hot spots at the sharp corners of the current injection site due to current crowding effects leading to the observed behaviour

    Lifestyle Behaviors and Self-Rated Health: The Living for Health Program

    Get PDF
    Background. Lack of adherence to dietary and physical activity guidelines has been linked to an increase in chronic diseases in the United States (US). The aim of this study was to assess the association of lifestyle behaviors with self-rated health (SRH). Methods. This cross-sectional study used self-reported data from Living for Health Program ( 1,701) which was conducted from 2008 to 2012 in 190 health fair events in South Florida, US. Results. Significantly higher percent of females as compared to males were classified as obese (35.4% versus 27.0%), reported poor/fair SRH (23.4% versus 15.0%), and were less physically active (33.9% versus 25.4%). Adjusted logistic regression models indicated that both females and males were more likely to report poor/fair SRH if they consumed 2 servings of fruits and vegetables per day (, 95% CI 1.30–3.54; , 95% CI 1.12–7.35, resp.) and consumed mostly high fat foods (, 95% CI 1.03–2.43; , 95% CI 1.67–2.43, resp.). The association of SRH with less physical activity was only significant in females (, 95% CI 1.17–2.35). Conclusion. Gender differences in health behaviors should be considered in designing and monitoring lifestyle interventions to prevent cardiovascular diseases
    • …
    corecore