570 research outputs found

    Scaling of the Critical Function for the Standard Map: Some Numerical Results

    Full text link
    The behavior of the critical function for the breakdown of the homotopically non-trivial invariant (KAM) curves for the standard map, as the rotation number tends to a rational number, is investigated using a version of Greene's residue criterion. The results are compared to the analogous ones for the radius of convergence of the Lindstedt series, in which case rigorous theorems have been proved. The conjectured interpolation of the critical function in terms of the Bryuno function is discussed.Comment: 26 pages, 3 figures, 13 table

    Head-to-head comparison of two angiography-derived fractional flow reserve techniques in patients with high-risk acute coronary syndrome: A multicenter prospective study.

    Get PDF
    FFRangio and QFR are angiography-based technologies that have been validated in patients with stable coronary artery disease. No head-to-head comparison to invasive fractional flow reserve (FFR) has been reported to date in patients with acute coronary syndromes (ACS). This study is a subset of a larger prospective multicenter, single-arm study that involved patients diagnosed with high-risk ACS in whom 30-70% stenosis was evaluated by FFR. FFRangio and QFR - both calculated offline by 2 different and blinded operators - were calculated and compared to FFR. The two co-primary endpoints were the comparison of the Pearson correlation coefficient between FFRangio and QFR with FFR and the comparison of their inter-observer variability. Among 134 high-risk ACS screened patients, 59 patients with 84 vessels underwent FFR measurements and were included in this study. The mean FFR value was 0.82 ± 0.40 with 32 (38%) being ≤0.80. The mean FFRangio was 0.82 ± 0.20 and the mean QFR was 0.82 ± 0.30, with 27 (32%) and 25 (29%) being ≤0.80, respectively. The Pearson correlation coefficient was significantly better for FFRangio compared to QFR, with R values of 0.76 and 0.61, respectively (p = 0.01). The inter-observer agreement was also significantly better for FFRangio compared to QFR (0.86 vs 0.79, p < 0.05). FFRangio had 91% sensitivity, 100% specificity, and 96.8% accuracy, while QFR exhibited 86.4% sensitivity, 98.4% specificity, and 93.7% accuracy. In patients with high-risk ACS, FFRangio and QFR demonstrated excellent diagnostic performance. FFRangio seems to have better correlation to invasive FFR compared to QFR but further larger validation studies are required

    The Pan-University Network for Global Health: framework for collaboration and review of global health needs

    Get PDF
    In the current United Nations efforts to plan for post 2015-Millennium Development Goals, global partnership to address non-communicable diseases (NCDs) has become a critical goal to effectively respond to the complex global challenges of which inequity in health remains a persistent challenge. Building capacity in terms of wellequipped local researchers and service providers is a key to bridging the inequity in global health. Launched by Penn State University in 2014, the Pan University Network for Global Health responds to this need by bridging researchers at more than 10 universities across the globe. In this paper we outline our framework for international and interdisciplinary collaboration, as well the rationale for our research areas, including a review of these two themes. After its initial meeting, the network has established two central thematic priorities: 1) urbanization and health and 2) the intersection of infectious diseases and NCDs. The urban population in the global south will nearly double in 25 years (approx. 2 billion today to over 3.5 billion by 2040). Urban population growth will have a direct impact on global health, and this growth will be burdened with uneven development and the persistence of urban spatial inequality, including health disparities. The NCD burden, which includes conditions such as hypertension, stroke, and diabetes, is outstripping infectious disease in countries in the global south that are considered to be disproportionately burdened by infectious diseases. Addressing these two priorities demands an interdisciplinary and multi-institutional model to stimulate innovation and synergy that will influence the overall framing of research questions as well as the integration and coordination of research

    Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons

    Get PDF
    Genotyping by high-resolution melting analysis of small amplicons is homogeneous and simple. However, this approach can be limited by physical and chemical components of the system that contribute to intersample melting variation. It is challenging for this method to distinguish homozygous G::C from C::G or A::T from T::A base-pair neutral variants, which comprise ∼16% of all human single nucleotide polymorphisms (SNPs). We used internal oligonucleotide calibrators and custom analysis software to improve small amplicon (42–86 bp) genotyping on the LightScanner®. Three G/C (PAH c.1155C>G, CHK2 c.1-3850G>C and candidate gene BX647987 c.261+22,290C>G) and three T/A (CPS1 c.3405-29A>T, OTC c.299-8T>A and MSH2 c.1511-9A>T) human single nucleotide variants were analyzed. Calibration improved homozygote genotyping accuracy from 91.7 to 99.7% across 1105 amplicons from 141 samples for five of the six targets. The average Tm standard deviations of these targets decreased from 0.067°C before calibration to 0.022°C after calibration. We were unable to generate a small amplicon that could discriminate the BX647987 c.261+22,290C>G (rs1869458) SNP, despite reducing standard deviations from 0.086°C to 0.032°C. Two of the sites contained symmetric nearest neighbors adjacent to the SNPs. Unexpectedly, we were able to distinguish these homozygotes by Tm even though current nearest neighbor models predict that the two homozygous alleles would be identical

    Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance.

    Get PDF
    Conservation tillage and organic farming are strategies used worldwide to preserve the stability and fertility of soils. While positive effects on soil structure have been extensively reported, the effects on specific root- and soil-associated microorganisms are less known. The aim of this study was to investigate how conservation tillage and organic farming influence the frequency and activity of plant-beneficial pseudomonads. Amplicon sequencing using the 16S rRNA gene revealed that Pseudomonas is among the most abundant bacterial taxa in the root microbiome of field-grown wheat, independent of agronomical practices. However, pseudomonads carrying genes required for the biosynthesis of specific antimicrobial compounds were enriched in samples from conventionally farmed plots without tillage. In contrast, disease resistance tests indicated that soil from conventional no tillage plots is less resistant to the soilborne pathogen Pythium ultimum compared to soil from organic reduced tillage plots, which exhibited the highest resistance of all compared cropping systems. Reporter strain-based gene expression assays did not reveal any differences in Pseudomonas antimicrobial gene expression between soils from different cropping systems. Our results suggest that plant-beneficial pseudomonads can be favoured by certain soil cropping systems, but soil resistance against plant diseases is likely determined by a multitude of biotic factors in addition to Pseudomonas

    Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    Get PDF
    BACKGROUND: High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. METHODOLOGY/PRINCIPAL FINDINGS: Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8-98.5; I(2) = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7-99.3; I(2) = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1-99.8; I(2) = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. CONCLUSIONS/SIGNIFICANCE: These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation

    Model based analysis of real-time PCR data from DNA binding dye protocols

    Get PDF
    BACKGROUND: Reverse transcription followed by real-time PCR is widely used for quantification of specific mRNA, and with the use of double-stranded DNA binding dyes it is becoming a standard for microarray data validation. Despite the kinetic information generated by real-time PCR, most popular analysis methods assume constant amplification efficiency among samples, introducing strong biases when amplification efficiencies are not the same. RESULTS: We present here a new mathematical model based on the classic exponential description of the PCR, but modeling amplification efficiency as a sigmoidal function of the product yield. The model was validated with experimental results and used for the development of a new method for real-time PCR data analysis. This model based method for real-time PCR data analysis showed the best accuracy and precision compared with previous methods when used for quantification of in-silico generated and experimental real-time PCR results. Moreover, the method is suitable for the analyses of samples with similar or dissimilar amplification efficiency. CONCLUSION: The presented method showed the best accuracy and precision. Moreover, it does not depend on calibration curves, making it ideal for fully automated high-throughput applications

    Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

    Get PDF
    Background The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. Results Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. Conclusions In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.publishedVersio

    Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    Get PDF
    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples
    corecore