535 research outputs found
Decline of coral reefs during late Paleocene to early Eocene global warming
Since the 1980s the frequency of warming events has intensified and simultaneously widespread coral bleaching, and enhanced coral mortality have been observed. Yet, it remains unpredictable how tropical coral reef communities will react to prolonged adverse conditions. Possibly, coral reef systems are sufficiently robust to withstand continued environmental pressures. But if coral mortality increases, what will platform communities of the future look like? The co-evolution of early Paleogene carbonate platforms and palaeoclimate may provide insight. Here we document the impact of early Paleogene global warming on shallow-water carbonate platforms in the Tethys. Between 59 and 55 Ma, three discrete stages in platform development can be identified Tethys-wide: during the first stage carbonate platforms mainly consisted of coralgal reefs; during the second – transitional – stage coralgal reefs thrived only at middle latitudes and gave way to larger foraminifera as dominant carbonate producer in low latitudes; finally, during the third stage, newly developing larger foraminifera lineages completely took over the role as main carbonate-producing organisms in low to middle latitudes. We postulate that rising temperatures led to a stepwise demise of Paleocene coral reefs, giving way to an unprecedented expansion of larger foraminifera, dominating Tethyan platforms during the early Eocene
Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM)
This paper provides a synthesis of the long- and short-term response of various marine ecosystems (deep oceans, pelagic, politic shelves and carbonate platforms) to the Paleocene-Eocene thermal maximum (PETM) and its broader paleoclimatic and paleoceanographic context. Despite the severity and sudden onset of global warming the PETM is not marked by a mass extinction event. The only major extinction is among bathyal to abyssal calcareous benthic foraminifera, including some calcareous agglutinated taxa. Coexisting non-calcareous deep water agglutinated foraminifera, ostracodes and trace fossils show prominent changes in composition, population structure and biodiversity, but there is no clear evidence of global extinctions. Except for the deep-sea calcareous benthic foraminiferal record, the PETM is best classified as a migration and origination event and was instrumental in kick-starting various short- and long-term evolutionary innovations in marine microfossil lineages. In pelagic and shallow shelf ecosystems, migration and origination during and after the PETM appears to precede extinction in the aftermath of the PETM. The response of most marine invertebrates (mollusks, echinoderms, brachiopods) to paleoclimatic and associated environmental changes (e.g., acidification, deoxygenation) during the PETM is virtually unknown as continuous high-resolution data of these groups spanning the PETM are unexplored and possibly not or hardly preserved. Yet information on these groups is required in order to improve assessments of the value of biotic records to deep-time global warming in the context of current climate change. In contrast, the relatively well-established response of Tethyan reef systems to late Paleocene-early Eocene global warming may provide a potential analog to a – possibly bleak - future of present-day coral reefs
Optical Spin Initialization and Non-Destructive Measurement in a Quantum Dot Molecule
The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is
optically prepared and measured through the trion triplet states. A
longitudinal magnetic field is used to tune two of the trion states into
resonance, forming a superposition state through asymmetric spin exchange. As a
result, spin-flip Raman transitions can be used for optical spin
initialization, while separate trion states enable cycling transitions for
non-destructive measurement. With two-laser transmission spectroscopy we
demonstrate both operations simultaneously, something not previously
accomplished in a single quantum dot.Comment: Accepted for publication in Phys. Rev. Let
Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs
We present photoluminescence studies of the molecular neutral
biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum
dot pairs. We tune either the hole or the electron levels of the two dots into
tunneling resonances. The spectra are described well within a few-level,
few-particle molecular model. Their properties can be modified broadly by an
electric field and by structural design, which makes them highly attractive for
controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments,
published
Thermopower of a Kondo-correlated quantum dot
The thermopower of a Kondo-correlated gate-defined quantum dot is studied
using a current heating technique. In the presence of spin correlations the
thermopower shows a clear deviation from the semiclassical Mott relation
between thermopower and conductivity. The strong thermopower signal indicates a
significant asymmetry in the spectral density of states of the Kondo resonance
with respect to the Fermi energies of the reservoirs. The observed behavior can
be explained within the framework of an Anderson-impurity model.
Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single
electron tunneling, Kondo-effect
PACS Numbers: 72.20.Pa, 73.23.HkComment: 4 pages, 4 figures, revised version, changed figure
Measuring Temperature Gradients over Nanometer Length Scales
When a quantum dot is subjected to a thermal gradient, the temperature of
electrons entering the dot can be determined from the dot's thermocurrent if
the conductance spectrum and background temperature are known. We demonstrate
this technique by measuring the temperature difference across a 15 nm quantum
dot embedded in a nanowire. This technique can be used when the dot's energy
states are separated by many kT and will enable future quantitative
investigations of electron-phonon interaction, nonlinear thermoelectric
effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
Optically-controlled single-qubit rotations in self-assembled InAs quantum dots
We present a theory of the optical control of the spin of an electron in an
InAs quantum dot. We show how two Raman-detuned laser pulses can be used to
obtain arbitrary single-qubit rotations via the excitation of an intermediate
trion state. Our theory takes into account a finite in-plane hole -factor
and hole-mixing. We show that such rotations can be performed to high
fidelities with pulses lasting a few tens of picoseconds.Comment: 6 pages, 4 figures; minor changes, J-ref adde
Surface Transitions for Confined Associating Mixtures
Thin films of binary mixtures that interact through isotropic forces and
directionally specific "hydrogen bonding" are considered through Monte Carlo
simulations. We show, in good agreement with experiment, that the single phase
of these mixtures can be stabilized or destabilized on confinement. These
results resolve a long standing controversy, since previous theories suggest
that confinement only stabilizes the single phase of fluid mixtures.Comment: LaTeX document, documentstyle[aps,preprint]{revtex}, psfig.sty,
bibtex, 13 pages, 4 figure
Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade
We study admittance and energy dissipation in an out-of-equlibrium single
electron box. The system consists of a small metallic island coupled to a
massive reservoir via single tunneling junction. The potential of electrons in
the island is controlled by an additional gate electrode. The energy
dissipation is caused by an AC gate voltage. The case of a strong Coulomb
blockade is considered. We focus on the regime when electron coherence can be
neglected but quantum fluctuations of charge are strong due to Coulomb
interaction. We obtain the admittance under the specified conditions. It turns
out that the energy dissipation rate can be expressed via charge relaxation
resistance and renormalized gate capacitance even out of equilibrium. We
suggest the admittance as a tool for a measurement of the bosonic distribution
corresponding collective excitations in the system
- …
