5,318 research outputs found

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    TxProbe: Discovering Bitcoin’s Network Topology Using Orphan Transactions

    Get PDF
    Bitcoin relies on a peer-to-peer overlay network to broadcast transactions and blocks. From the viewpoint of network measurement, we would like to observe this topology so we can characterize its performance, fairness and robustness. However, this is difficult because Bitcoin is deliberately designed to hide its topology from onlookers. Knowledge of the topology is not in itself a vulnerability, although it could conceivably help an attacker performing targeted eclipse attacks or to deanonymize transaction senders. In this paper we present TxProbe, a novel technique for reconstructing the Bitcoin network topology. TxProbe makes use of peculiarities in how Bitcoin processes out of order, or “orphaned” transactions. We conducted experiments on Bitcoin testnet that suggest our technique reconstructs topology with precision and recall surpassing 90%. We also used TxProbe to take a snapshot of the Bitcoin testnet in just a few hours. TxProbe may be useful for future measurement campaigns of Bitcoin or other cryptocurrency networks

    Adult hypertrophic pyloric stenosis due to peptic ulcer disease: a rare presentation

    Get PDF
    Primary adult hypertrophic stenosis is uncommon with an uncertain etiopathogenesis and associated gastric outlet obstruction mimics gastric carcinoma. We present a case of AHPS as sequel of peptic ulcer disease in a 72 year old male. With the advent of proton pump inhibitors as a mainstay of medical therapy, complication into gastric outlet obstruction is a rare disease today. Upper GI endoscopy revealed a distended stomach, residual food and a hyperemic bulky pylorus not accommodating the endoscope. Barium meal follow-through revealed a dilated stomach and minimal barium passing through the pylorus. Histological analysis revealed mild dysplasia at the focus with dense inflammatory infiltrates composed of lymphocytes and eosinophils in the lamina propria. No evidence of malignancy was noted, favouring chronic gastritis. The condition mimics other forms of proliferative disorders like carcinoma, gastrointestinal stromal tumors. We present the clinical findings, imaging analysis and discuss etiopathogenesis and management

    Shear viscosity of hot scalar field theory in the real-time formalism

    Get PDF
    Within the closed time path formalism a general nonperturbative expression is derived which resums through the Bethe-Salpter equation all leading order contributions to the shear viscosity in hot scalar field theory. Using a previously derived generalized fluctuation-dissipation theorem for nonlinear response functions in the real-time formalism, it is shown that the Bethe-Salpeter equation decouples in the so-called (r,a) basis. The general result is applied to scalar field theory with pure lambda*phi**4 and mixed g*phi**3+lambda*phi**4 interactions. In both cases our calculation confirms the leading order expression for the shear viscosity previously obtained in the imaginary time formalism.Comment: Expanded introduction and conclusions. Several references and a footnote added. Fig.5 and its discussion in the text modified to avoid double counting. Signs in Eqs. (45) and (53) correcte

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter ⟚σ⟩\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization

    Full text link
    We investigate the role played by nonequilibrium dynamical screening in the thermalization of carriers in a simplified two-component two-band model of a semiconductor. The main feature of our approach is the theoretically sound treatment of collisions. We abandon Fermi's Golden rule in favor of a nonequilibrium field theoretic formalism as the former is applicable only in the long-time regime. We also introduce the concept of nonequilibrium dynamical screening. The dephasing of excitonic quantum beats as a result of carrier-carrier scattering is brought out. At low densities it is found that the dephasing times due to carrier-carrier scattering is in picoseconds and not femtoseconds, in agreement with experiments. The polarization dephasing rates are computed as a function of the excited carrier density and it is found that the dephasing rate for carrier-carrier scattering is proportional to the carrier density at ultralow densities. The scaling relation is sublinear at higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon request; Submitted to Phys. Rev.

    Triaging Interventional Pain Procedures During COVID-19 or Related Elective Surgery Restrictions: Evidence-Informed Guidance from the American Society of Interventional Pain Physicians (ASIPP)

    Get PDF
    BACKGROUND: The COVID-19 pandemic has worsened the pain and suffering of chronic pain patients due to stoppage of elective interventional pain management and office visits across the United States. The reopening of America and restarting of interventional techniques and elective surgical procedures has started. Unfortunately, with resurgence in some states, restrictions are once again being imposed. In addition, even during the Phase II and III of reopening, chronic pain patients and interventional pain physicians have faced difficulties because of the priority selection of elective surgical procedures.Chronic pain patients require high intensity care, specifically during a pandemic such as COVID-19. Consequently, it has become necessary to provide guidance for triaging interventional pain procedures, or related elective surgery restrictions during a pandemic. OBJECTIVES: The aim of these guidelines is to provide education and guidance for physicians, healthcare administrators, the public and patients during the COVID-19 pandemic. Our goal is to restore the opportunity to receive appropriate care for our patients who may benefit from interventional techniques. METHODS: The American Society of Interventional Pain Physicians (ASIPP) has created the COVID-19 Task Force in order to provide guidance for triaging interventional pain procedures or related elective surgery restrictions to provide appropriate access to interventional pain management (IPM) procedures in par with other elective surgical procedures. In developing the guidance, trustworthy standards and appropriate disclosures of conflicts of interest were applied with a section of a panel of experts from various regions, specialties, types of practices (private practice, community hospital and academic institutes) and groups. The literature pertaining to all aspects of COVID-19, specifically related to epidemiology, risk factors, complications, morbidity and mortality, and literature related to risk mitigation and stratification was reviewed. The evidence -- informed with the incorporation of the best available research and practice knowledge was utilized, instead of a simplified evidence-based approach. Consequently, these guidelines are considered evidence-informed with the incorporation of the best available research and practice knowledge. RESULTS: The Task Force defined the medical urgency of a case and developed an IPM acuity scale for elective IPM procedures with 3 tiers. These included emergent, urgent, and elective procedures. Examples of emergent and urgent procedures included new onset or exacerbation of complex regional pain syndrome (CRPS), acute trauma or acute exacerbation of degenerative or neurological disease resulting in impaired mobility and inability to perform activities of daily living. Examples include painful rib fractures affecting oxygenation and post-dural puncture headaches limiting the ability to sit upright, stand and walk. In addition, urgent procedures include procedures to treat any severe or debilitating disease that prevents the patient from carrying out activities of daily living. Elective procedures were considered as any condition that is stable and can be safely managed with alternatives. LIMITATIONS: COVID-19 continues to be an ongoing pandemic. When these recommendations were developed, different stages of reopening based on geographical regulations were in process. The pandemic continues to be dynamic creating every changing evidence-based guidance. Consequently, we provided evidence-informed guidance. CONCLUSION: The COVID-19 pandemic has created unprecedented challenges in IPM creating needless suffering for pain patients. Many IPM procedures cannot be indefinitely postponed without adverse consequences. Chronic pain exacerbations are associated with marked functional declines and risks with alternative treatment modalities. They must be treated with the concern that they deserve. Clinicians must assess patients, local healthcare resources, and weigh the risks and benefits of a procedure against the risks of suffering from disabling pain and exposure to the COVID-19 virus

    Nonequilibrium Dynamics in Noncommutative Spacetime

    Get PDF
    We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This momentum dependent alternation of the decay and thermalization rates could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates.Comment: 24 pages, 2 figure

    Hydrodynamic transport functions from quantum kinetic theory

    Get PDF
    Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with λΊ4\lambda \Phi ^{4} self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success of the latter requires clever rendition of diagrammatic resummations which is neither straightforward nor failsafe. Moreover, the method based on the CTP-2PI effective action illustrated here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an appealing method for a first-principles calculation of transport functions of a thermal non-abelian gauge theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.Comment: 25 pages revtex, 11 postscript figures. Final version accepted for publicatio
    • 

    corecore