
TxProbe: Discovering Bitcoin’s Network Topology
Using Orphan Transactions

Sergi Delgado-Segura1,*, Surya Bakshi2, Cristina Pérez-Solà3, James Litton4,
Andrew Pachulski4, Andrew Miller2,*, and Bobby Bhattacharjee4

1 Universitat Autònoma de Barcelona
2 University of Illinois Urbana-Champaign

3 Universitat Rovira i Virgili
4 University of Maryland

* Corresponding Authors: s.delgado@ucl.ac.uk, soc1024@illinois.edu

Abstract. Bitcoin relies on a peer-to-peer overlay network to broadcast
transactions and blocks. From the viewpoint of network measurement,
we would like to observe this topology so we can characterize its perfor-
mance, fairness and robustness. However, this is difficult because Bitcoin
is deliberately designed to hide its topology from onlookers. Knowledge of
the topology is not in itself a vulnerability, although it could conceivably
help an attacker performing targeted eclipse attacks or to deanonymize
transaction senders.
In this paper we present TxProbe, a novel technique for reconstructing
the Bitcoin network topology. TxProbe makes use of peculiarities in how
Bitcoin processes out of order, or “orphaned” transactions. We conducted
experiments on Bitcoin testnet that suggest our technique reconstructs
topology with precision and recall surpassing 90%. We also used TxProbe
to take a snapshot of the Bitcoin testnet in just a few hours. TxProbe
may be useful for future measurement campaigns of Bitcoin or other
cryptocurrency networks.

1 Introduction

Bitcoin builds on top of a peer-to-peer (P2P) network to relay transactions
and blocks in a decentralized manner. Broadcast is the routing scheme chosen
to propagate transactions and blocks over the network, in order to spread the
information as quick as possible and facilitate agreement on a common state.
The topology of the Bitcoin network is unknown by design and it is built to
mimic a random network. While knowing the topology of the network does not
pose a threat by itself, it eases the performance of several network based attacks,
such as eclipse attacks [8,12], or attacks on users anonymity [10,2]. On top of
that, a study of the network topology may reveal to what extent the network
is really decentralized, whether there exist supernodes, bridge nodes, potential
points of failure, etc.

In this paper we present TxProbe, a technique to infer the topology of the
publicly reachable Bitcoin network. Nodes of the non-reachable network, such as



2 Sergi Delgado-Segura et al.

nodes behind NAT or firewalls, or nodes not accepting incoming connections will
not be inferred with our technique. Our work builds on prior work in exploiting
Bitcoin network side channels as measurement techniques, but exploits a new
side channel involving the handling of orphan transactions (transactions that
arrive out of order).

To validate our technique, we have conducted an experiment in which our
custom node is connected to our own ground truth nodes (running Bitcoin Core
software). We then check whether we were able to get the connections of such
nodes. On top of that, a scan of the entire live network has been performed
resulting on a snapshot of the Bitcoin testnet. Finally, a comparative analysis of
the obtained testnet graph against similar random graphs is provided to quantify
whether or not the network resembles a random network.

TxProbe is an active measurement technique, and we have not conclusively
ruled out that it could interfere with ordinary transactions. We have therefore
limited our measurement and validate activities to the Bitcoin testnet. The tech-
nique could be used in the future to infer the topology of Bitcoin or any alt-coin
sharing its network protocol, including Bitcoin Cash, Litecoin or Dogecoin.

2 Related work

Network topology inference is a topic that has been previously analysed in several
other works. Biryukov et al. [2] showed how a node could be uniquely identified
by a subset of its neighbourhood, and how the neighbourhood could be easily
inferred by checking the address messages propagation throughout the network.
Biryukov et al. [3] also showed how using Tor to guard against the aforementioned
technique was not useful, and it could even ease the deanonymization process.

The use of address message propagation along with timestamp analysis was
used by Miller et al. [11] to infer the topology of the Bitcoin network. The analysis
highlighted how the network did not behave as a random graph but, instead, it
was filled with several influential nodes representing a disproportionate amount
of mining power. Their AddressProbe technique took advantage of the two-hour
penalty applied to received address messages from connected peers. However, the
two-hour penalty was removed from the Bitcoin Core nodes after 0.10.1 release
[17,16], reducing the fingerprint left by address messages, and therefore, making
AddressProbe no longer useful to infer the topology of the network.

Neudecker et al. [13] performed timing analyses of the transaction propaga-
tion to infer the topology of the Bitcoin network with a substantial precision
and recall (∼ 40%).

Network information from the P2P network has also been used, alongside
with address clustering heuristics, to check whether such information could be
useful in the deanonymization of Bitcoin users [14]. The study shows how while
most of the network information cannot ease the address clustering process,
a small number of users show correlations that may make them vulnerable to
network based deanonymization attacks.



TxProbe: Discovering Bitcoin’s Network Topology 3

A recent proposal by Grundmann et al. [6] has shown how transaction ac-
cumulation of double-spending transactions can also be used to infer the neigh-
bourhood of a targeted node with precision and recall as high as 95%.

Finally, Efe Gencer et al. [5] have presented a comparative analysis of the de-
centralization on two of the most popular cryptocurrencies to the date, Bitcoin
and Ethereum, using application layer information obtained from the Falcon
Network. Their results show how around 56% of Bitcoin nodes are run in data-
centers. On top of that, their study highlights how the top four Bitcoin miners
control more than the 54% of the mining power.

3 Background

In this section we give an overview of Bitcoin’s transaction propagation behavior.
Since our TxProbe technique relies on subtleties of this process, we go into detail
on just the relevant parts.

3.1 Three-round transaction propagation

Bitcoin nodes propagate transactions by flooding, such that each node relays
data about each transaction to every one of its peers. However, to minimize net-
work traffic, nodes follow a three-step protocol, first sending just the transaction
hash (32 bytes) and only sending the entire transaction (range from a few hun-
dred bytes up to tens of kilobytes) if it is requested. This protocol is depicted in
Figure 1. In more detail, the three steps are:

– Inventory messages (inv) are used to announce the knowledge of one
or more transactions or blocks. When a node receives (or generates) a new
transaction or block he announces it to his peers by creating an inv message
containing the transaction hash. Those peers who do not know about the
announced item will ask for it back using a getdata message. Furthermore,
when a node receives an inv message asking for a certain item, and he
requests it back using a getdata message, the requester will wait up to 2
minutes for the node offering the item to respond back with it. Any other
request offering the same item will be queued and only responded, first in
first out, if the first node fails to reply.

– Get data messages (getdata) are used by Bitcoin nodes to request trans-
actions and blocks to their peers. Such messages are sent as a response to
the aforementioned inv messages when the receiver of the latter is interested
in any of the offered items.

– Transaction messages (tx) are used to send transactions between peers.
They are usually sent as a response to a getdata message. In contrast to
the previously introduced messages, tx messages always contain a single
transaction.



4 Sergi Delgado-Segura et al.

A B

inv(h(tx
i ))

get_data(h(txi
))

Wait for txi
up to 2 mintx(tx

i )

Fig. 1: Three-step protocol used to forward transactions in Bitcoin.

3.2 Mempool and Unspent Transaction Outputs (UTXOs)

A Bitcoin node validates each transaction it receives before relaying to its peers
as described above. A valid transaction must have correct signatures, and must
only spend existing and currently-unspent coins. Otherwise the transaction is
discarded and not propagated further.

To aid in validation, each Bitcoin full node maintains a view of the current
set of available coins (the utxo set). It also maintains a collection of pending
transactions, called mempool, all of which have been validated against the utxo
set and contain no double-spends amongst themselves.

Much of the complexity in the Bitcoin software, and the behavior we exploit
in TxProbe, involves handling special cases during validation. Hence when a
transaction is received, it is validated against the current utxo set. Since mem-
pool is also kept free of double-spends, when a Bitcoin node receives a second
transaction that spends the same coin as a transaction held in mempool, the
second transaction is simply discarded.5

3.3 Handling orphan transactions

Sometimes a node receives transactions out of order. A transaction is considered
an “orphan” if it is received prior to its direct ancestors, i.e. it spends a coin that
is not yet part of the blockchain or in mempool. Since orphan transactions cannot
be validated until the parent arrives, they are not immediately relayed to peers.
Instead, orphan transactions are stored in a buffer, MapOrphanTransactions so
that when the parent arrives it can be validated without re-requesting it from
the network.
5 There is a special case, called replace-by-fee (RBF) [7], in which a double-spending

transaction replaces a previous transaction as long as the previous transaction is
flagged to allow this and if the new transaction pays a larger fee. This does not
affect the TxProbe technique.



TxProbe: Discovering Bitcoin’s Network Topology 5

A B

Coinscope

tx
P

B’s mempoool

B’s MapOrphanTransactions

A’s mempoool

tx F

txM

txP

txM

txF

txM

tx
M

(1)

(2)

(1)

(3)

(1) (1)

(3)

(2)

(a) Basic positive edge inferring technique
between two nodes.

A B

Coinscope

tx
P

B’s mempoool

B’s MapOrphanTransactions

A’s mempoool

tx F

txP

txM

txF

tx
M

(1)

(2)

(1)

(1) (1)

(2)
Ø

(b) Basic negative edge inferring technique
between two nodes.

Fig. 2: Basic edge inferring technique.

To point out a detail relevant to our TxProbe technique: If a node receives a
notice about a transaction from a peer (an inv message), but that transaction
has already been stored as an orphan, then that transaction will be omitted
from subsequent get_data messages. Looking ahead, this behavior enables our
measurement node to probe whether an orphan transaction has already been
received or not. We discuss other details about MapOrphanTransactions, such
as eviction policies, later on when discussing optimizations to TxProbe.

4 Inferring the Bitcoin network topology

In this section we explain our technique for inferring the topology of Bitcoin’s
reachable peer-to-peer network, making use of the subtleties of transaction prop-
agation in Bitcoin as described earlier, and in particular conflicting transactions
and orphan transactions. We start by introducing a basic edge inference tech-
nique that tests for an edge between a single pair of peers. Later we discuss how
to scale the technique up to take network-wide snapshots efficiently.

4.1 Basic edge inferring technique

To explain the main idea behind our technique, we start by describing a scenario
in which our Coinscope measurement node is connected to two nodes 𝐴 and 𝐵,
and we want to check if there exists an edge between them. Note that such a
scenario is not realistic, but we will discuss real cases later on. First we create
a pair of double spending transactions referred to as the parent (𝑡𝑥𝑃 ) and the
flood (𝑡𝑥𝐹 ). We send 𝑡𝑥𝑃 to 𝐴 and 𝑡𝑥𝐹 to 𝐵 and assume that both transactions
arrive to their destination at the same time, so 𝐴 will reject 𝑡𝑥𝐹 if 𝐵 sends it to
him and vice versa. Now we create a third transaction, the marker (𝑡𝑥𝑀 ), that



6 Sergi Delgado-Segura et al.

spends from 𝑡𝑥𝑃 and we send it to 𝐴. On receiving 𝑡𝑥𝑀 , 𝐴 will forward it to all
his peers. If the edge between the two nodes exists, as depicted in Figure 2a, 𝐵
will receive the transaction. It is worth noting that 𝐵 does not know about 𝑡𝑥𝑃 ,
so 𝑡𝑥𝑀 will be flagged as orphan and not relayed any further. On the contrary,
if the edge between nodes 𝐴 and 𝐵 does not exist, as depicted in Figure 2b, 𝑡𝑥𝑀

will never be sent to 𝐵.
At this point we can check if the connection between the two nodes exists.

To do so, we ask 𝐵 about 𝑡𝑥𝑀 by sending him an inv message containing 𝑡𝑥𝑀 ’s
hash. If the connection between the two nodes exists, 𝐵 will have 𝑡𝑥𝑀 stored
in his MapOrphanTransactions pool, so he will not request it back. On the
other hand, if the edge does not exist, 𝐵 will respond with a getdata message
containing 𝑡𝑥𝑀 ’s hash.

C

A B

Coinscope

tx
P

B’s mempoool

B’s MapOrphanTransactions

A’s mempoool

tx F

tx
M

txP

txM

txF

txM

tx
M

(1)

(3)

(1)

(5)

(1) (1)

(5)

(3)

tx P

(2)

tx M

(4)

C’s mempoool

txP

txM

(2)

(4)

Fig. 3: Incorrect edge inferring with three nodes.

While this basic technique works in the most simple scenario, namely with
two nodes potentially connected only between them, it can drastically fail if just
one additional node is added to the picture. Let’s see what happens if we connect
one additional node 𝐶, as depicted in Figure 3, and repeat the procedure. Since
𝐴 is connected to 𝐶, 𝑡𝑥𝑃 and 𝑡𝑥𝑀 will be forwarded to him, 𝐶 will treat both
transactions as regular ones, and forward them to 𝐵, who will reject 𝑡𝑥𝑃 as
double spending of 𝑡𝑥𝐹 , but accept 𝑡𝑥𝑀 as orphan. Ultimately, we will ask 𝐵
about 𝑡𝑥𝑀 , and infer a non-existing edge between him and 𝐴.

Such a basic example highlights the first main issue of the basic approach:
isolation. We need to ensure that 𝑡𝑥𝑃 remains only in the node we have sent
it to. Otherwise, we may end up inferring non-existent edges. Moreover, this
basic technique also builds on top of another fragile property: synchronicity.
If node 𝐴 receives 𝑡𝑥𝑃 before 𝐵 receives 𝑡𝑥𝐹 , 𝐴 can forward 𝑡𝑥𝑃 to 𝐵, and
the latter will end up rejecting 𝑡𝑥𝐹 upon reception, making the technique to



TxProbe: Discovering Bitcoin’s Network Topology 7

fail. Finally, the basic technique lacks scalability. Assuming we can sort out
the two previous issues, for every three transactions created we will be able to
infer at most the whole neighbourhood of a single node. Inferring the topology
of the whole reachable network will require creating almost three transactions
per node, namely 3 · (𝑛 − 1) where 𝑛 is the number of reachable nodes in the
network. In order to solve the three aforementioned problems, we have created
a technique called TxProbe.

4.2 TxProbe

TxProbe is a topology inference technique that uses double spending and orphan
transactions to check the existence of edges between a pair of nodes. TxProbe
can be used to infer the topology of several cryptocurrency P2P networks, as
long as they share the network protocol and orphan transactions handling with
Bitcoin (i.e. Bitcoin Cash, Litecoin, ZCash, etc). In contrast to recently proposed
techniques, such as [6], TxProbe is intended to perform full network topology
inference, instead of targeted neighbourhood discovery, even though the latter
can be also achieved. TxProbe builds on the aforementioned basic edge inferring
technique solving its three main downsides:

Regarding isolation and synchronicity, TxProbe uses Coinscope, the ob-
servation and testing framework introduced by Miller et al. in [11], to main-
tain connections with all reachable nodes and performs the invblock tech-
nique (proposed also in [11]) to ensure that a target transaction will remain
in a target node. With regard to scalability, TxProbe takes advantage of the
MapOrphanTransactions pool management to perform multiple nodes neigh-
bourhood discovery at the same time.

We now describe the main components of the TxProbe technique. In a single
trial, we break the network nodes into two groups, the source set and the sink
set, where we aim to infer all the connections between source set nodes and
sink set nodes. The source set will be usually smaller than the sink set,
and should at least be less than the size of the mapOrphanTransactions pool.

Setup

Create conflicting transactions: First, we need to create the set of conflicting
transactions, namely the parents, markers, and flood transactions. This time we
are not targeting a single node to infer his peers (as we did with 𝐴 in the basic
inferring technique), but all the nodes in the source set. Therefore instead of
creating a single parent and the flood transaction spending from the same utxo,
we will create 𝑛+ 1 distinct double spending transactions, 𝑛 being the number
of nodes in the source set: 𝑛 of those transactions will be tagged as parents,
while the remaining one will be the flood transaction. Finally we create a marker
transaction from each of the parents, resulting in 𝑛 parents, 𝑛 markers, and the
flood transaction. Figure 4 depicts a high level representation of the created
transactions (spending from UTXO1).



8 Sergi Delgado-Segura et al.

Markeri

FloodUTXO1

Parenti Markeri

UTXO0

Cleanser MarkeriSquatteri

Fig. 4: High level representation of the transactions created in TxProbe

Invblock the network: Once all the parents, markers and the flood transaction
have been created, it is time to ensure that the isolation property will hold
during the experiment. It is worth noting that for the isolation property to hold
there are two things we need to ensure: First, that the flood transaction (𝑡𝑥𝐹 )
remains within the sink set. Secondly, that each parent (𝑡𝑥𝑃𝑖) remains only in
the source set node (𝑁𝑖) it will be sent to. To ensure so, we will perform an
invblock of 𝑡𝑥𝐹 and every 𝑡𝑥𝑃 . invblock consists of sending inv messages to
all the nodes in the network with the transaction hashes we want to block the
propagation. Recall that a node requesting a transaction with a getdata message
in response to a inv message will wait up to two minutes until requesting such
transaction to any other peer offering it. By sending multiple inv messages
containing the same transaction hashes to a node it can be blocked to request
those transactions to any other node for an arbitrary number of minutes, which
gives enough time to send all the transactions without having to worry about
the isolation property being broken. It is also worth noting that the network
will not be blocked with the markers hashes, since their propagation from the
source set to the sink set is what will allow us to infer edges between nodes.

Main protocol

Once we have set the proper conditions for the experiment to be run, we can
start sending the transactions we created earlier.

Send transactions: First, the flood transaction is sent to all the nodes in the
sink set. After waiting a few seconds for the flood transaction to propagate,
we can send the proper transactions to the source set. We start by sending a
different parent to each node in the set, wait a couple of seconds, and then send
the corresponding marker to each node. Since we have invblocked the whole
network with the flood and parents, at this point we are sure that, as long as
the nodes behave properly, the flood transaction is only present in the sink set
and each parent is only present in its respective node from the source set.

Requesting markers back: After waiting a few seconds for the propagation of
the markers, we will request all of them back from every node in the sink set.
Despite being orphans, markers are still considered known transactions by those
sink set nodes. In that sense, as we have already seen in the basic inferring



TxProbe: Discovering Bitcoin’s Network Topology 9

technique, when an orphan transaction is requested as part of a getdata message
the node holding it will not include it in their response. By sending an inv
message containing all the markers to the sink set nodes we will receive back
a request of only the subset of markers they have not heard of. 6 By mapping
the markers that have not been sent back to the source set node we originally
sent them to, we can infer edges between the source set and the respondent
sink set nodes.

Permuting the sets: With all the aforementioned steps, we are able to infer
the edges between a certain configuration of the network, that is, a specific set
of nodes forming the source set and sink set. However, the technique cannot
infer edges between nodes in the same set. In order to infer the whole topology,
we need to run several rounds permuting the sets. Therefore, both the setup and
the main protocol will be run until every pair of nodes have been in a different
set at least once.

4.3 Making room for marker transactions.

The MapOrphanTransactions pool is not allowed to grow unbounded. In fact,
it has a small default limit of only 100 transactions at a time. When this limit
is exceeded, orphan transactions are evicted. The eviction mechanism works
as follows: First, it generates a random hash randomhash. Next, it selects the
transaction in the pool with the closest hash higher than randomhash and evicts
it from the pool. The eviction mechanism repeats until the pool size is within
limits.

Eviction poses a problem for scaling up the TxProbe technique. Marker trans-
actions must not be evicted until they are read back at the end of a measurement
trial. However, the eviction policy has a design flaw, which enables us to make
preferential transactions that are hard to evict. By crafting transactions for
which their hashes lay between a small fixed range (e.g: by re-signing the trans-
action), and since the randomhash hash used in the eviction mechanism picks
values over an uniform distribution, we can bound the odds of our transaction
being evicted depending on how small the range is set.

Cleansing the orphan pool: When we were performing the basic inferring
technique there was no need to worry about transactions being evicted from
the MapOrphanTransactions pool since we were only creating a single marker.
However, now up to 𝑛 markers would need to be stored by a single node. In
order to ensure that there is enough space to store all the markers, we will
empty the MapOrphanTransactions pool of all nodes in the sink set. We start
by creating a transaction we call the cleanser, and spending from it we create
100 distinct double spending transactions we call the squatters. Next, we send
all the squatters to every single node in the sink set aiming to full the orphan
pool. Finally, we send the cleanser to every sink set node. Upon reception of
6 Notice that some times the subset will be the actual set.



10 Sergi Delgado-Segura et al.

the cleanser, all transactions in the orphan transactions pool will no longer be
orphans. One of the squatters will be flagged as valid, whereas the rest will
be discarded as double-spending transactions. Regardless of which squatter is
accepted by each node, the MapOrphanTransactions pool of each sink set
node will be emptied. Figure 4 depicts a high level representation of the orphans
and cleanser transaction creation (spending from UTXO0).

5 Costs of topology inferrence

In this section we discuss the costs of running TxProbe both in terms of time
and transaction fees.

5.1 Time costs

How long it takes to infer the topology of a network using TxProbe directly
depends on the number of reachable nodes 𝑟𝑛 in the network. As we have already
seen, the size of our source sets is bound by the MapOrphanTransactions
pool size, which is 100 by default. Our set partitioning algorithm works as a
grid, in order to separate nodes in two sets we create a grid of width 𝑤 =

min(⌈√𝑟𝑛 ⌉, 100) and length ℎ = ⌈𝑟𝑛
𝑤
⌉, and we traverse the grid by rows and

columns, being the selected row/column in iteration 𝑖 our source set for the
𝑖-th round of the experiment, and the rest of nodes our sink set.7 The total
number of different source sets, and therefore, the total number of rounds
required to run an experiment will then be:

𝑡𝑟 =

⎧⎨⎩ℎ+ 𝑤 − 2, for ℎ ≤ 𝑤

ℎ− 1 + ⌈ ℎ
𝑤
⌉ · 𝑤, for ℎ > 𝑤

Each round of the TxProbe can be run in about 2.5 minutes, resulting in 2.5·𝑡𝑟
minutes to run TxProbe over a network of 𝑟𝑛 nodes. Inferring the topology of a
network like Bitcoin testnet (∼ 1000 nodes) requires, therefore, about 2.6 hours,
whereas inferring the topology of Bitcoin mainnet (∼ 10000 nodes) requires
about 8.25 hours. The partitioning algorithm can be found depicted in Figure 5.

5.2 Transaction fee costs

The costs of running TxProbe directly depend on the number of rounds of the
experiment 𝑡𝑟 and the fee rate to be paid in order to get our transactions relayed
by the network. For every round we will perform an orphan cleansing, resulting
in two standard 1-1 P2PKH transactions (only the cleanser and one squatter will
be accepted, the rest will be eventually flagged as double-spends). Moreover, at

7 Notice that when traversing columns the number of elements in the set can be higher
than 𝑤, in which case the algorithm will create ⌈ℎ/𝑤⌉ sets per column.



TxProbe: Discovering Bitcoin’s Network Topology 11

... ... ... ... ...

...

...

...

...

round w+1

round w+2

round w+3

round w+h

round 1 round 2 round 3 round w

Fig. 5: Set-partitioning algorithm used in TxProbe. Sets corresponding to the
last row and column (marked in red) can be skipped since they will be already
counted by the rest of sets.

every round either the flood will be accepted (1-1 P2PKH transaction) or a
parent-marker pair will be accepted (two 1-1 P2PKH transactions).

The size of a 1-1 P2PKH transaction using compressed public keys and as-
suming a signature of maximum length (73-byte signature) is 193 bytes long.
Putting all together, the cost of running TxProbe in a network of 𝑟𝑛 nodes
ranges between 3 · 193 · 𝑓𝑒𝑒_𝑟𝑎𝑡𝑒 · 𝑡𝑟 and 4 · 193 · 𝑓𝑒𝑒_𝑟𝑎𝑡𝑒 · 𝑡𝑟.

At a fee rate of 5 𝑠𝑎𝑡/𝑏𝑦𝑡𝑒 8, running the experiment in a network like Bitcoin
mainnet will cost between 573210 and 764280 𝑠𝑎𝑡𝑜𝑠ℎ𝑖.

Impact of TxProbe measurement. We say a few words about the feasibility of
using TxProbe to do ethical measurement. The TxProbe measurement involves
sending many kinds of abnormal transactions, and thus it can only be used
ethically if we ensure it does not harm or burden the network we are measuring.
To start with, although TxProbe transactions are unusual in that they are multi-
way conflicting double-spends, they are not relayed and thus do not increase
network or storage utilization compared to ordinary transactions.

The TxProbe experiment can have a destructive effect, however, on the
MapOrphanTransactions data structure. As we discussed earlier, if the orphan
transactions pool is full, then adding new orphan transactions (such as the
marker transactions in TxProbe) can evict others. We could not rule out the
potential that our measurement would add to this congestion (i.e., over an 8+
hours for a scan of the entire network) and could adversely affect real transac-
tions.

8 Fee to get transactions confirmed between 1-2 blocks on 27th August 2018 according
to https://bitcoinfees.earn.com/.



12 Sergi Delgado-Segura et al.

6 Experiments and results

We conducted experiments using the Bitcoin testnet in order to evaluate our
topology inference technique. We first conducted ground truth experiments to
quantify its precision and recall, and then took a snapshot measurement of test-
net to demonstrate its usefulness for network-wide scans.

6.1 Validation

In order to validate our results we run 5 local Bitcoin nodes as ground truth.
The ground truth nodes are included as part of the source set in each round
of the experiment. This means that, if our results are correct, at the end of the
experiment we would have inferred every edge between the ground truth nodes
and the sink set nodes.

For every run of the experiment there are always nodes that do not behave
according to the default client, for example by ignoring invblock and therefore,
sending transactions without receiving getdata messages. In order to detect
such nodes, an invblock test is performed before every experiment using two
Coinscope instances: the first instance crafts a random 32-byte hash and offers it
to the whole network using inv messages. The second instance offers the exact
same hash within the next two minutes and collects all the getdata responses.
All those nodes who responded the second instance are flagged as unblockable
nodes and taken out of the experiment.

Transitory edges (i.e. edges that have been there for a short amount of time)
are also removed from the inferred results, as well as nodes who know about
transactions they are not supposed to (nodes who missed a parent/marker when
it has been sent to them, nodes holding the flood transaction when they were
supposed to hold a parent transactions, etc). Finally, disconnecting nodes (nodes
that have disconnected from Coinscope while the experiment was running) are
also removed, as well as all inferred edges referring them.

Our validation reported a precision of 100% and recall between 93.86% and
95.45% with a 95% confidence over 40 runs of the experiment.

6.2 Analysis of the inferred network

This section includes a description of a testnet network snapshot taken on 21st
February, 2018, as obtained using our technique, which reported a precision of
100% with a recall of 97.40%.

The observed network has 733 nodes and 6090 edges, with an average degree
of 16.6. The degree distribution of the network is far from uniform (Figure 6a),
with most of the nodes having between 7 and 14 neighbors. The most common
degree observed in the network is 8 (shown by 12% of the nodes), a value that
matches the default maximum number of outgoing nodes of the Bitcoin Core



TxProbe: Discovering Bitcoin’s Network Topology 13

(a) Degree distribution of nodes in the test-
net snapshot.

(b) Communities detected in the
testnet snapshot.

client.9 The maximum degree is 59, less than half of the maximum number of
default peer connections of Bitcoin Core.10

Table 1 provides a summary of basic properties of the network regarding
clustering, distances, assortativity, and community structure, comparing the ob-
served values with those obtained over random graphs with similar character-
istics. That is, for each property, we create 100 random graphs that resemble
the obtained testnet graph, compute the property over the random graphs, and
provide both the average of the results over the random graphs and the per-
centage of times the value over the random graph is higher than the observed
in the testnet snapshot. We have considered three different models for gener-
ating random graphs: Erdős-Rényi [4] (ER), configuration model [15] (CM),
and Barabási-Albert [1] (BA). The Erdős-Rényi model generates graphs where
each pair of nodes may have an edge with the same probability, and indepen-
dently of the other edges of the network. ER generates graphs with a binomial
degree distribution, and it is commonly used as baseline to analyse networks.
However, the observed testnet graph does not seem to have an ER-like degree
distribution (recall Figure 6a). Therefore, we also create random graphs using
the configuration model, that allows creating networks with a chosen degree dis-
tribution. Finally, since many real world computer networks have been reported
to be preferential attachment networks, we also include Barabási-Albert model.
BA generates scale-free networks, that have power-law degree distributions. The
random graphs we create resemble the observed network: ER graphs are created
with the same number of nodes and edges, CM graphs have the same degree
distribution (and, therefore, they implicitly also have the same number of nodes
and edges), BA graphs have the same number of nodes and a similar number of
edges (by adjusting the number of new edges created at each step of the graph
9 https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L59

10 The maximum number of default connections is set to 125:
https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L73



14 Sergi Delgado-Segura et al.

generation algorithm, the number of edges is adjusted to be as close as possible
to the observed one).

Metric Testnet ER CM BA
Diameter 5 4 (0%) 4.93 (1%) 4 (0%)

Periphery size 6 612.9 (100%) 21.2 (80%) 379.6 (100%)
Radius 3 3 (0%) 3 (0%) 3 (0%)

Center size 45 120.7 (100%) 57.9 (70%) 362.9 (100%)
Eccentricity 3.946 3.827 (0%) 3.979 (70%) 3.528 (0%)

Clustering coefficient 0.052 0.023 (0%) 0.036 (0%) 0.066 (100%)
Transitivity 0.128 0.023 (0%) 0.036 (0%) 0.057 (0%)

Degree assortativity 0.291 −0.001 (0%) −0.008 (0%) −0.043 (0%)
Country assortativity 0.007 −0.001 (0%) −0.001 (0%) −0.002 (0%)

Clique number 24 3.73 (0%) 4.05 (0%) 6.58 (0%)
Modularity 0.270 0.220 (0%) 0.216 (0%) 0.214 (0%)

Table 1: Network properties. For random graphs, the 100-run average is provided,
with the percentage of times the property over the random graph is higher than
the observed in the testnet snapshot in parenthesis.

Distances are the properties analyzed in the testnet graph that most approx-
imate those obtained in random graphs. For instance, the radius of the testnet
snapshot is 3, exactly the same value observed in all the generated random
graphs. The diameter (the maximum distance between any pair of nodes) of the
testnet graph is 5, which is higher than most of the random graphs, but very
close to their diameters. Moreover, by removing just 3 of the lowest degree nodes
of the testnet graph, its diameter becomes 4 (removing the degrees from the se-
quence in the CM model has the same effect). On the contrary, the number of
nodes in the center and in the periphery (i.e. nodes with eccentricity equal to
the radius and the diameter, respectively) differs largely from random graphs.

With respect to clustering, the testnet graph exhibits a higher average clus-
tering coefficient than ER and CM graphs, but less than BA graphs. However,
observed transitivity is higher than any of the random graphs. Clustering coef-
ficient analyses how well connected the neighborhood of a node is (taking into
account the neighborhood regardless of its size), whereas transitivity is focused
on studying 3-node substructures.

The testnet snapshot shows higher assortativity than the expected for ran-
dom graphs, that is, nodes in the testnet tend to connect to other nodes that
are similar to themselves more often than what ER, CM and BA random graphs
exhibit. Specifically, nodes tend to connect to other nodes with the same degree
and, to a less extent but also in a significant manner, to nodes in the same
country.

Regarding community structure, we have computed the modularity over the
best partition found using the Louvain method. The modularity of the testnet
graph is higher than any of the random graphs, regardless of the chosen model.



TxProbe: Discovering Bitcoin’s Network Topology 15

10

20

30

40

50 degree

Fig. 6: Geographical location of nodes.

That is, the network shows more community structure than what should be ex-
pected for a random graph. Figure 6b depicts a visualization of the communities
found in the testnet snapshot, with the color of the node denoting the commu-
nity it belongs to. There are nine communities, with the biggest two (purple
and green in the image) having 37% of the nodes of the network. Notably, there
is one community (colored in pink) that contains only 7.5% of the nodes but
includes the 25 highest degree nodes of the network. This is consistent with
the high degree assortativity reported in the network. Remarkably, the testnet
graph contains a clique (a fully connected graph) of 24 nodes. This clique is
found inside the high-degree community (depicted in pink in the visualization).
In contrast, the largest clique formed by nodes of any other community has a
size of just 6 nodes.

We have also used an IP Geolocation API 11 to obtain the geographical
location of the nodes in the testnet snapshot. Figure 6 shows a map with the
node’s locations, where both the size and color of the nodes are used to denote
nodes’ degree. Most nodes are located in the United States, Central Europe, and
East Asia.

7 Conclusions

We set out to design an effective measurement technique that can reconstruct
the Bitcoin network topology. We validated TxProbe to show that it is accurate
and can indeed be scaled up to snapshot the entire network with reasonably low
fees. However, we decided not to carry out a measurement of the main network
because we could not rule out its potential to delay the propagation of real users’

11 http://ip-api.com/



16 Sergi Delgado-Segura et al.

transactions. We consider it an open question whether this technique (or analysis
thereof) can be improved so it can be used less invasively.

We did, however, take network measurement snapshots of the Bitcoin test
network topology (over 700 nodes). Our analysis of the Bitcoin testnet reveals
significant non-random structure, including several communities, as well as a
clique of high-degree nodes. Although our findings over testnet cannot be ap-
plied to the mainnet, it demonstrates that the technique is viable not only in
Bitcoin, but in any other cryptocurrency sharing the network protocol and or-
phan transaction handling with it.

Like other measurement techniques, TxProbe makes use of implementation-
specific behaviors in the Bitcoin software. While cryptocurrencies have not made
topology-hiding an explicit design requirement, in the past software changes that
improve user anonymity have also had the effect of closing off measurement av-
enues. Viewed in this light, TxProbe is the next step in a tacit arms race between
measurement efforts and privacy enhancing design. We make the following sug-
gestions to the cryptocurrency community to avoid this cycle: First, determine
whether network topology or other metrics should be an explicit design goal,
in which case effort can be focused on achieving it robustly. Second, follow the
Tor project [9] for example, in deploying measurement-supporting mechanisms
into the software itself, that balances the positive goals of network measurement
(such as quantifying decentralization, detecting weaknesses or attacks, etc.) with
the privacy goals of users.

Acknowledgments This work was sponsored in part by a gift from the DTR
foundation, and a grant from by IBM-ILLINOIS Center for Cognitive Computing
Systems Research (C3SR) - a research collaboration as part of the IBM AI
Horizons Network.

References

1. Albert, R., Barabási, A.: Statistical mechanics of complex networks. CoRR cond-
mat/0106096 (2001)

2. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 15–29. CCS ’14, ACM, New York, NY,
USA (2014)

3. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In:
Proceedings of the 2015 IEEE Symposium on Security and Privacy. pp.
122–134. SP ’15, IEEE Computer Society, Washington, DC, USA (2015),
https://doi.org/10.1109/SP.2015.15

4. Erdös, P., Rényi, A.: On the evolution of random graphs. In: Math. Inst. Hungar.
Acad. Sci. pp. 17–61 (1960)

5. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in
bitcoin and ethereum networks (2018)

6. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumu-
lation and double spends for topology inference in bitcoin. In: Financial Cryptog-
raphy and Data Security. Springer International Publishing (2018)



TxProbe: Discovering Bitcoin’s Network Topology 17

7. Harding, D.A., Todd, P.: Opt-in Full Replace-by-Fee Signaling.
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki (2015)

8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15). pp. 129–144. USENIX Association, Washington, D.C. (2015)

9. Jansen, R., Johnson, A.: Safely measuring tor. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1553–1567.
ACM (2016)

10. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using p2p
network traffic. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryptography
and Data Security. pp. 469–485. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

11. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering bitcoin’s public topology and influential nodes (2015)

12. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS P). pp. 305–320 (March 2016)

13. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for in-
ferring the topology of the bitcoin peer-to-peer network. In: 2016 Intl
IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). pp. 358–367 (July 2016)

14. Neudecker, T., Hartenstein, H.: Could network information facilitate address clus-
tering in bitcoin? In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.,
Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial
Cryptography and Data Security. pp. 155–169. Springer International Publishing,
Cham (2017)

15. Newman, M.E.: The structure and function of complex networks. SIAM review
45(2), 167–256 (2003)

16. Nick, J.: Guessing bitcoin’s p2p connections.
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
(2015)

17. The Bitcoin Core developers: Bitcoin core 0.10.1 release notes.
https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md (april
2015)


