687 research outputs found

    Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training

    Get PDF
    Extensive evidence indicates that glucocorticoid hormones act in a variety of brain regions to enhance the consolidation of memory of emotionally motivated training experiences. We previously reported that corticosterone, the major glucocorticoid in the rat, administered into the dorsal striatum immediately after inhibitory avoidance training dose-dependently enhances memory consolidation of this training. There is also abundant evidence that the intrinsic cholinergic system of the dorsal striatum is importantly involved in memory consolidation of inhibitory avoidance training. However, it is presently unknown whether these two neuromodulatory systems interact within the dorsal striatum in the formation of long-term memory. To address this issue, we first investigated in male Wistar rats whether the muscarinic receptor agonist oxotremorine administered into the dorsal striatum immediately after inhibitory avoidance training enhances 48 h retention of the training. Subsequently, we examined whether an attenuation of glucocorticoid signaling by either a systemic administration of the corticosterone-synthesis inhibitor metyrapone or an intra-striatal infusion of the glucocorticoid receptor (GR) antagonist RU 38486 would block the memory enhancement induced by oxotremorine. Our findings indicate that oxotremorine dose-dependently enhanced 48 h retention latencies, but that the administration of either metyrapone or RU 38486 prevented the memory-enhancing effect of oxotremorine. In the last experiment, corticosterone was infused into the dorsal striatum together with the muscarinic receptor antagonist scopolamine immediately after inhibitory avoidance training. Scopolamine blocked the enhancing effect of corticosterone on 48 h retention performance. These findings indicate that there are mutual interactions between glucocorticoids and the striatal cholinergic system in enhancing the consolidation of memory of inhibitory avoidance training

    Stress Hormones Receptors in the Amygdala Mediate the Effects of Stress on the Consolidation, but Not the Retrieval, of a Non Aversive Spatial Task

    Get PDF
    This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 µg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive)

    Fluorescent Cell Barcoding as a Tool to Assess the Age-Related Development of Intracellular Cytokine Production in Small Amounts of Blood from Infants

    Get PDF
    Fluorescent Cell Barcoding (FCB) is a flow cytometric technique which has been used for assessing signaling proteins. This FCB technique has the potential to be applied in other multiparameter analyses. Since data on antigen (Ag)-specific T-cell immune responses, like intracellular cytokine production, are still lacking in infants because limited blood volumes can be obtained for analysis, the FCB technique could be very useful for this purpose. The objectives of this study were to modify the FCB method to be able to measure multiple Ag-specific cytokine reponses in T-cells upon simultaneous stimulation by various antigens and mitogens in small amounts of blood and to investigate the cytokine pattern of T-cell subsets in healthy infants aged six and twelve months. Blood samples, collected from 20 healthy infants aged six and twelve months, were stimulated in vitro with the antigens: phorbol-myristate-acetate (PMA), purified-protein-derivative (PPD), Tetanus-toxoid (TT), Staphylococcal-enterotoxin-B (SEB), and phytohemagglutinin (PHA). Each stimulus was barcoded by labelling with different intensities of fluorescent cell barcoding (FCB) markers. Intracellular production of interleukin-2, interferon-gamma, and tumor necrosis factor-alpha was measured simultaneously in just one blood sample of 600 µl whole blood. Significant age-related differences in cytokine production were shown for PMA, PHA, and TT in CD4+ T-cells, and for PMA, PHA, SEB, and TT in CD8+ T-cells. The intracellular cytokine production by CD4+ and CD8+ T-cells was higher at twelve months compared to six months of age for all antigens, except for PMA, which was lower at the age of twelve months. Based on the consistency in both T-cell subsets, we conclude that the new FCB method is a promising tool to investigate the age-related development of intracellular cytokine production in infants

    Medical adjunctive therapy for patients with chronic limb-threatening ischemia:a systematic review

    Get PDF
    INTRODUCTION: To systematically review the literature on medical adjunctive therapy for patients with chronic limb-threatening ischemia (CLTI). EVIDENCE ACQUISITION: MEDLINE, Embase, and Cochrane Database of Systematic Reviews were searched for studies published between January 1, 2009, and June 1, 2019. Articles that studied medical treatment of CLTI patients and reported clinical outcomes were eligible. Main exclusion criteria were case reports <20 patients, incorrect publication type, and CLTI caused by Buerger disease. The primary end point was major amputation (above the ankle) in studies with a follow-up of ≥6 months. Secondary end points were other clinical end points such as death and wound healing. Study quality was assessed according to the Downs and Black checklist. EVIDENCE SYNTHESIS: Included were 42 articles; 4 focused on antiplatelet therapy, 5 on antihypertensive medication, 6 on lipid-lowering therapy, 16 on stem cell therapy, 3 on growth factors, 5 on prostanoids, and 1 study each on cilostazol, glucose-lowering therapy, spinal cord stimulation, sulodexide, and hemodilution. Calcium channel blockers, iloprost, cilostazol, and hemodilution showed significant improvement of limb salvage, but data are limited. Stem cell therapy showed no significant improvement of limb salvage but could potentially improve wound healing. Antiplatelets, antihypertensives, and statins showed significantly lower cardiovascular events rates but not evident lower major amputation rates. The quality of the studies was fair to good. CONCLUSIONS: Certain medical therapies serve to improve limb salvage next to revascularization in CLTI patients, whereas others are important in secondary prevention. Because high quality evidence is limited, further research is needed
    corecore