43 research outputs found

    Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer.

    No full text
    The development and sustenance of specific neuronal populations in the peripheral and central nervous systems are controlled through the binding of neurotrophic factors to high-affinity cell surface receptors. The neurotrophins (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF; neurotrophin 3, NT3; and neurotrophin 4, NT4) are dimeric molecules which share approximately 50% sequence identity. The crystal structure of the murine NGF homodimer [McDonald et al. (1991) Nature 354, 411-414] indicated that the dimer interface corresponds to regions of high sequence conservation throughout the neurotrophin family. This potential compatibility was duly exploited for the production in vitro of noncovalent heterodimers between the different neurotrophins [Radziejewski, C., and Robinson, R.C. (1993) Biochemistry 32, 13350-13356; Jungbluth et al. (1994) Eur. J. Biochem. 221, 677-685]. Here, we report the X-ray structure at 2.3 A resolution of one such heterodimer, between human BDNF, and human NT3. The NGF, BDNF, and NT3 protomers share the same topology and are structurally equivalent in regions which contribute to the dimer interface in line with the propensity of the neurotrophins to form heterodimers. Analysis of the structure of regions of the BDNF/NT3 heterodimer involved in receptor specificity led us to conclude that heterodimer binding to p75 involves distant binding sites separately located on each protomer of the heterodimer. In contrast, heterodimer interactions with the trk receptors probably utilize hybrid binding sites comprised of residues contributed by both protomers in the heterodimer. The existence of such hybrid binding sites for the trk receptor provides an explanation for the lower activity of the BDNF/NT3 heterodimer in comparison to the homodimers.(ABSTRACT TRUNCATED AT 250 WORDS

    Crystals of the neurotrophins.

    No full text
    The neurotrophins show a high degree of amino acid sequence homology, share similar solution properties, and display distinct but parallel functionalities. Here we report the crystallization and preliminary X-ray characterization of three neurotrophins: brain-derived neurotrophin, neurotrophin 3, and the heterodimer between brain-derived neurotrophin and neurotrophin 4. These findings are related to other published crystal parameters for neurotrophins, leading to the observation that, although crystal packing is highly variant, neurotrophins share common solubilities with respect to crystal growth

    VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment.

    No full text
    Lymphangiogenesis, an important initial step in tumor metastasis and transplant sensitization, is mediated by the action of VEGF-C and -D on VEGFR3. In contrast, VEGF-A binds VEGFR1 and VEGFR2 and is an essential hemangiogenic factor. We re-evaluated the potential role of VEGF-A in lymphangiogenesis using a novel model in which both lymphangiogenesis and hemangiogenesis are induced in the normally avascular cornea. Administration of VEGF Trap, a receptor-based fusion protein that binds and neutralizes VEGF-A but not VEGF-C or -D, completely inhibited both hemangiogenesis and the outgrowth of LYVE-1(+) lymphatic vessels following injury. Furthermore, both lymphangiogenesis and hemangiogenesis were significantly reduced in mice transgenic for VEGF-A(164/164) or VEGF-A(188/188) (each of which expresses only one of the three principle VEGF-A isoforms). Because VEGF-A is chemotactic for macrophages and we demonstrate here that macrophages in inflamed corneas release lymphangiogenic VEGF-C/VEGF-D, we evaluated the possibility that macrophage recruitment plays a role in VEGF-A-mediated lymphangiogenesis. Either systemic depletion of all bone marrow-derived cells (by irradiation) or local depletion of macrophages in the cornea (using clodronate liposomes) prior to injury significantly inhibited both hemangiogenesis and lymphangiogenesis. We conclude that VEGF-A recruitment of monocytes/macrophages plays a crucial role in inducing inflammatory neovascularization by supplying/amplifying signals essential for pathological hemangiogenesis and lymphangiogenesis

    The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site.

    No full text
    The neurotrophins are growth factors that are involved in the development and survival of neurons. Neurotrophin release by a target tissue results in neuron growth along the neurotrophin concentration gradient, culminating in the eventual innervation of the target tissue. These activities are mediated through trk cell surface receptors. We have determined the structures of the heterodimer formed between brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT4), as well as the structure of homodimer of NT4. We also present the structure of the Neurotrophin 3 homodimer, which is refined to higher resolution than previously published. These structures provide the first views of the architecture of the NT4 protomer. Comparison of the surface of a model of the BDNF homodimer with the structures of the neurotrophin homodimers reveals common features that may be important in the binding between the neurotrophins and their receptors. In particular, there exists an analogous region on the surface of each neurotrophin that is likely to be involved in trk receptor binding. Variations in sequence on the periphery of this common region serve to confer trk receptor specificity

    Summer Floods in Central Europe – Climate Change Track?

    No full text
    In Central Europe, river flooding has been recently recognized as a major hazard, in particular after the 1997 Odra /Oder flood, the 2001 Vistula flood, and the most destructive 2002 deluge on the Labe/Elbe. Major recent floods in central Europe are put in perspective and their common elements are identified. Having observed that flood risk and vulnerability are likely to have grown in many areas, one is curious to understand the reasons for growth. These can be sought in socio-economic domain (humans encroaching into floodplain areas), terrestrial systems (land-cover changes – urbanization, deforestation, reduction of wetlands, river regulation), and climate system. The atmospheric capacity to absorb moisture, its potential water content, and thus potential for intense precipitation, are likely to increase in a warmer climate. The changes in intense precipitation and high flows are examined, based on observations and projections. Study of projected changes in intense precipitation, using climate models, for several areas of central Europe, and in particular, for drainage basins of the upper Labe/Elbe, Odra/Oder, and Vistula is reported. Significant changes have been identified between future projections and the reference period, of relevance to flood hazard in areas, which have experienced severe recent flooding

    Characterisation of neurotrophin dimers and monomers

    No full text
    When recombinant brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are purified by reverse-phase chromatography, these neurotrophins elute as two distinct peaks. This is also the case when naturally occurring BDNF is purified from brain tissue. As indicated by gelfiltration experiments, the peaks with shorter retention times correspond to neurotrophin dimers, those with longer retention times to monomers. In contrast, a BDNF mutant with a single amino-acid replacement (Arg-1--<Lys) in the basic processing site common to all neurotrophin precursors elutes as a single peak. This peak is shown by gel-filtration chromatography to consist of dimers with a molecular mass almost twice that of wild-type dimers. N-terminal sequencing indicates an extension of 19 amino acids, including a glycosylated asparagine residue. The biological activity of the BDNF mutant ([R-1K]BDNF) is identical with that of wild-type BDNF when tested in a neuron survival assay. Using this assay, the biological activities of guanidine-hydrochloride-denatured neurotrophin monomers were found to be much lower than that of the dimers, and experiments with NT-3 monomers and NIH3T3 cells expressing trkC suggest that such monomers exist in solution in a conformation that prevents efficient interactions with neurotrophin receptors
    corecore