480 research outputs found

    Semantic aware Bayesian network model for actionable knowledge discovery in linked data

    Get PDF
    The majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end users cannot act upon them seamlessly. Furthermore, interdisciplinary knowledge can not be obtained from domain-specific silo of data. The emergence of Linked Data (LD) as a new model for knowledge representation, which intertwines data with its semantics, has introduced new opportunities for data miners. Accordingly, this paper proposes an ontology-based Semantic-Aware Bayesian network (BN) model. In contrast to the existing mining algorithms, the proposed model does into transform the original format of the LD set. Therefore, it not only accommodates the semantic aspects in LD, but also caters to the need of connecting different data-sets from different domains. We evaluate the proposed model on a Bone Dysplasia dataset, Experimental results show promising performance

    Possible Quantum Spin Liquid States on the Triangular and Kagome Lattices

    Full text link
    The frustrated spin-one-half Heisenberg model on triangualr and Kagome Lattices is mapped onto a single specis of fermion carrying statistical flux. The corresponding Chern-Simons gauge theory is analyzed at the Gaussian level and found to be massive. This provides a new motivation for the spin-liquid Kalmeyer-Laughlin wave function. Good overlap of this wave function with the numerical ground state is found for small clusters.Comment: 13 pages, revtex. IUCM-920

    Predicting Outcome in dogs with Primary Immune-Mediated Hemolytic Anemia: Results of a Multicenter Case Registry

    Get PDF
    BACKGROUND: Outcome prediction in dogs with immune‐mediated hemolytic anemia (IMHA) is challenging and few prognostic indicators have been consistently identified. OBJECTIVES: An online case registry was initiated to: prospectively survey canine IMHA presentation and management in the British Isles; evaluate 2 previously reported illness severity scores, Canine Hemolytic Anemia Score (CHAOS) and Tokyo and to identify independent prognostic markers. ANIMALS: Data from 276 dogs with primary IMHA across 10 referral centers were collected between 2008 and 2012. METHODS: Outcome prediction by previously reported illness‐severity scores was tested using univariate logistic regression. Independent predictors of death in hospital or by 30‐days after admission were identified using multivariable logistic regression. RESULTS: Purebreds represented 89.1% dogs (n = 246). Immunosuppressive medications were administered to 88.4% dogs (n = 244), 76.1% (n = 210) received antithrombotics and 74.3% (n = 205) received packed red blood cells. Seventy‐four per cent of dogs (n = 205) were discharged from hospital and 67.7% (n = 187) were alive 30‐days after admission. Two dogs were lost to follow‐up at 30‐days. In univariate analyses CHAOS was associated with death in hospital and death within 30‐days. Tokyo score was not associated with either outcome measure. A model containing SIRS‐classification, ASA classification, ALT, bilirubin, urea and creatinine predicting outcome at discharge was accurate in 82% of cases. ASA classification, bilirubin, urea and creatinine were independently associated with death in hospital or by 30‐days. CONCLUSIONS AND CLINICAL IMPORTANCE: Markers of kidney function, bilirubin concentration and ASA classification are independently associated with outcome in dogs with IMHA. Validation of this score in an unrelated population is now warranted

    Quantum Ferromagnetism and Phase Transitions in Double-Layer Quantum Hall Systems

    Full text link
    Double layer quantum Hall systems have interesting properties associated with interlayer correlations. At ν=1/m\nu =1/m where mm is an odd integer they exhibit spontaneous symmetry breaking equivalent to that of spin 1/21/2 easy-plane ferromagnets, with the layer degree of freedom playing the role of spin. We explore the rich variety of quantum and finite temperature phase transitions in these systems. In particular, we show that a magnetic field oriented parallel to the layers induces a highly collective commensurate-incommensurate phase transition in the magnetic order.Comment: 4 pages, REVTEX 3.0, IUCM93-013, 1 FIGURE, hardcopy available from: [email protected]

    Spontaneous Inter-layer Coherence in Double-Layer Quantum-Hall Systems I: Charged Vortices and Kosterlitz-Thouless Phase Transitions

    Full text link
    At strong magnetic fields double-layer two-dimensional-electron-gas systems can form an unusual broken symmetry state with spontaneous inter-layer phase coherence. In this paper we explore the rich variety of quantum and finite-temperature phase transitions associated with this broken symmetry. We describe the system using a pseudospin language in which the layer degree-of-freedom is mapped to a fictional spin 1/2 degree-of-freedom. With this mapping the spontaneous symmetry breaking is equivalent to that of a spin 1/2 easy-plane ferromagnet. In this language spin-textures can carry a charge. In particular, vortices carry e/2 electrical charge and vortex-antivortex pairs can be neutral or carry charge e. We derive an effective low-energy action and use it to discuss the charged and collective neutral excitations of the system. We have obtained the parameters of the Landau-Ginzburg functional from first-principles estimates and from finite-size exact diagonalization studies. We use these results to estimate the dependence of the critical temperature for the Kosterlitz-Thouless phase transition on layer separation.Comment: 56 pages, 19 figures available upon request at [email protected]. RevTex 3.0. IUCM94-00
    corecore