The majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end users cannot act upon them seamlessly. Furthermore, interdisciplinary knowledge can not be obtained from domain-specific silo of data. The emergence of Linked Data (LD) as a new model for knowledge representation, which intertwines data with its semantics, has introduced new opportunities for data miners. Accordingly, this paper proposes an ontology-based Semantic-Aware Bayesian network (BN) model. In contrast to the existing mining algorithms, the proposed model does into transform the original format of the LD set. Therefore, it not only accommodates the semantic aspects in LD, but also caters to the need of connecting different data-sets from different domains. We evaluate the proposed model on a Bone Dysplasia dataset, Experimental results show promising performance