3,075 research outputs found

    Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition

    Full text link
    Researchers have studied the normal-superconducting phase transition in the high-TcT_c cuprates in a magnetic field (the vortex-glass or Bose-glass transition) and in zero field. Often, transport measurements in "zero field" are taken in the Earth's ambient field or in the remnant field of a magnet. We show that fields as small as the Earth's field will alter the shape of the current vs. voltage curves and will result in inaccurate values for the critical temperature TcT_c and the critical exponents ν\nu and zz, and can even destroy the phase transition. This indicates that without proper screening of the magnetic field it is impossible to determine the true zero-field critical parameters, making correct scaling and other data analysis impossible. We also show, theoretically and experimentally, that the self-field generated by the current flowing in the sample has no effect on the current vs. voltage isotherms.Comment: 4 pages, 4 figure

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure

    U-Pb zircon dating of basement inliers within the Moine Supergroup, Scottish Caledonides: implications of Archaean protolith ages.

    Get PDF
    Basement gneiss inliers within the Scottish Caledonides have been conventionally correlated with the Archaean Lewisian Gneiss Complex of the Caledonian foreland. Alternatively, the inliers could represent allochthonous terranes accreted to Laurentia before or during the Caledonian orogeny. SIMS U-Pb zircon dating indicates that the Ribigill, Borgie, Farr and Western Glenelg basement inliers are characterized by late Archaean protolith ages, and a period of isotopic disturbance in the late Palaeoproterozoic. The data are broadly consistent with correlation between the inliers and components of the Lewisian Gneiss Complex of the Caledonian foreland. The c. 2900 Ma protolith ages support correlation of the Borgie and Farr inliers with the Assynt terrane, and a younger, c. 2800 Ma age for the Ribigill inlier supports correlation with the Rhiconich terrane.None of the studied inliers shows a complete match of protolith and early metamorphic histories with any of the Lewisian basement terranes, but differences between the inliers and the foreland are no greater than those recorded within the foreland basement terranes themselves. Therefore, it remains probable that the dated inlier gneisses formed a distal part of the Laurentian margin prior to final telescoping during the Caledonian orogeny

    The dispersive self-dual Einstein equations and the Toda lattice

    Get PDF
    The Boyer-Finley equation, or SU(∞)SU(\infty)-Toda equation is both a reduction of the self-dual Einstein equations and the dispersionlesslimit of the 2d2d-Toda lattice equation. This suggests that there should be a dispersive version of the self-dual Einstein equation which both contains the Toda lattice equation and whose dispersionless limit is the familiar self-dual Einstein equation. Such a system is studied in this paper. The results are achieved by using a deformation, based on an associative ⋆\star-product, of the algebra sdiff(Σ2)sdiff(\Sigma^2) used in the study of the undeformed, or dispersionless, equations.Comment: 11 pages, LaTeX. To appear: J. Phys.

    Probing the limits of superconductivity

    Full text link
    DC voltage versus current measurements of superconductors in a magnetic field are widely interpreted to imply that a phase transition occurs into a state of zero resistance. We show that the widely-used scaling function approach has a problem: Good data collapse occurs for a wide range of critical exponents and temperatures. This strongly suggests that agreement with scaling alone does not prove the existence of the phase transition. We discuss a criterion to determine if the scaling analysis is valid, and find that all of the data in the literature that we have analyzed fail to meet this criterion. Our data on YBCO films, and other data that we have analyzed, are more consistent with the occurrence of small but non-zero resistance at low temperature.Comment: 13 page pdf file, figures included To be published in conference proceedings of SPIE 200

    Driven Morse Oscillator: Model for Multi-photon Dissociation of Nitrogen Oxide

    Full text link
    Within a one-dimensional semi-classical model with a Morse potential the possibility of infrared multi-photon dissociation of vibrationally excited nitrogen oxide was studied. The dissociation thresholds of typical driving forces and couplings were found to be similar, which indicates that the results were robust to variations of the potential and of the definition of dissociation rate. PACS: 42.50.Hz, 33.80.WzComment: old paper, 8 pages 6 eps file

    Limitation of energy deposition in classical N body dynamics

    Full text link
    Energy transfers in collisions between classical clusters are studied with Classical N Body Dynamics calculations for different entrance channels. It is shown that the energy per particle transferred to thermalised classical clusters does not exceed the energy of the least bound particle in the cluster in its ``ground state''. This limitation is observed during the whole time of the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl

    The zero-field superconducting phase transition obscured by finite-size effects in thick YBa2Cu3O7−δ\mathrm{\bf{YBa_{2}Cu_{3}O_{7-\delta}}} films

    Full text link
    We report on the normal-superconducting phase transition in thick YBa2Cu3O7−δ\mathrm{YBa_{2}Cu_{3}O_{7-\delta}} films in zero magnetic field. We find significant finite-size effects at low currents even in our thickest films (d=3200d = 3200 \AA). Using data at higher currents, we can unambiguously find TcT_c and zz, and show z=2.1±0.15z = 2.1 \pm 0.15, as expected for the three-dimensional XY model with diffusive dynamics. The crossover to two-dimensional behavior, seen by other researchers in thinner films (d≤500d \leq 500 \AA), obscures the three-dimensional transition in both zero field and the vortex-glass transition in field, leading to incorrect values of TcT_c (or TgT_g), ν\nu, and zz. The finite-size effects, usually ignored in thick films, are an explanation for the wide range of critical exponents found in the literature.Comment: 5 pages, 4 figure
    • …
    corecore