1,992 research outputs found

    The implications of resonant x-ray scattering data on the physics of the insulating phase of V_2O_3

    Full text link
    We have performed a quantitative analysis of recent resonant x-ray scattering experiments carried out in the antiferromagnetic phase of V_2O_3 by means of numerical ab-initio simulations. In order to treat magnetic effects, we have developed a method based on multiple scattering theory (MST) and a relativistic extension of the Schr\"{o}dinger Equation, thereby working with the usual non relativistic set of quantum numbers l,m,σl,m,\sigma for angular and spin momenta. Electric dipole-dipole (E1-E1), dipole-quadrupole (E1-E2) and quadrupole-quadrupole (E2-E2) transition were considered altogether. We obtain satisfactory agreement with experiments, both in energy and azimuthal scans. All the main features of the V K edge Bragg-forbidden reflections with h+k+l=h+k+l=odd can be interpreted in terms of the antiferromagnetic ordering only, {\it ie}, they are of magnetic origin. In particular the ab-initio simulation of the energy scan around the (1,1,1)-monoclinic reflection excludes the possibility of any symmetry reduction due to a time-reversal breaking induced by orbital ordering.Comment: 11 pages, 6 figure

    Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3

    Full text link
    Motivated by recent neutron and x-ray observations in V_2O_3, we derive the effective Hamiltonian in the strong coupling limit of an Hubbard model with three degenerate t_{2g} states containing two electrons coupled to spin S = 1, and use it to re-examine the low-temperature ground-state properties of this compound. An axial trigonal distortion of the cubic states is also taken into account. Since there are no assumptions about the symmetry properties of the hopping integrals involved, the resulting spin-orbital Hamiltonian can be generally applied to any crystallographic configuration of the transition metal ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of V_2O_3 we consider the antiferromagnetic insulating phase. We find two variational regimes, depending on the relative size of the correlation energy of the vertical pairs and the in-plane interaction energy. The former favors the formation of stable molecules throughout the crystal, while the latter tends to break this correlated state. We determine in both cases the minimizing orbital solutions for various spin configurations, and draw the corresponding phase diagrams. We find that none of the symmetry-breaking stable phases with the real spin structure presents an orbital ordering compatible with the magnetic space group indicated by very recent observations of non-reciprocal x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very small excitation energy in two distinct regions of the phase space, which might turn into the true ground state of V_2O_3 due to the favorable coupling with the lattice. We illustrate merits and drawbacks of the various solutions and discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure

    Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals

    Full text link
    Motivated by recent results of NNth order muffin-tin orbital (NMTO) implementation of the density functional theory (DFT), we re-examine low-temperature ground-state properties of the anti-ferromagnetic insulating phase of vanadium sesquioxide V2_2O3_3. The hopping matrix elements obtained by the NMTO-downfolding procedure differ significantly from those previously obtained in electronic structure calculations and imply that the in-plane hopping integrals are as important as the out-of-plane ones. We use the NMTO hopping matrix elements as input and perform a variational study of the ground state. We show that the formation of stable molecules throughout the crystal is not favorable in this case and that the experimentally observed magnetic structure can still be obtained in the atomic variational regime. However the resulting ground state (two t2gt_{2g} electrons occupying the degenerate ege_g doublet) is in contrast with many well established experimental observations. We discuss the implications of this finding in the light of the non-local electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure

    Structural dichroism in the antiferromagnetic insulating phase of V_2O_3

    Full text link
    We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single crystal. Linear dichroism of several percent is measured in the hexagonal plane and found to be in good agreement with ab-initio calculations based on multiple scattering theory. This experiment definitively proves the structural origin of the signal and therefore solves a controversy raised by previous interpretations of the same dichroism as non-reciprocal. It also calls for a further investigation of the role of the magnetoelectric annealing procedure in cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005

    Local tetragonal distortion in La_{0.7}Sr_{0.3}MnO_3 strained thin films probed by x-ray absorption spectroscopy

    Full text link
    We report on an angular resolved X-ray Absorption Spectroscopy study of La0.7Sr0.3MnO3La_{0.7}Sr_{0.3}MnO_{3} thin films epitaxially grown by pulsed laser deposition on slightly mismatched substrates which induce tensile or compressive strains. XANES spectra give evidence of tetragonal distortion within the MnO6MnO_{6} octahedra, with opposite directions for tensile and compressive strains. Quantitative analysis has been done and a model of tetragonal distortion reflecting the strain has been established. EXAFS data collected in plane for tensile substrate confirm the change in the Mn−OMn-O average bond distance and the increase of Mn−MnMn-Mn length matching with the enlargement of the cell parameter. From these results we conclude that there is no significant change in the Mn−O−MnMn-O-Mn angle. Our observations conflict with the scenarios which this angle is the main driving parameter in the sensitivity of manganite films properties to external strains and suggest that the distortion within the octahedra plays a key role in the modification of the transport and magnetic properties.Comment: 8 pages, 6 figure

    A Critical Assessment of Multiple Scattering Expansions

    Get PDF
    We propose a comparative and critical assessment of multiple scattering expansions. The so-called multiple scattering series expansion is much used in the description of spectroscopies at higher energies. However, it is plagued with convergence problems when operated at lower energies. We compare this method to related methods that can be found in the literature, relying both on finite and infinite expansions. After discussing the pros and cons of these methods, we establish a simple alternative to multiple scattering series expansion which has a wider and faster range of convergence. [DOI: 10.1380/ejssnt.2012.599

    Switching to low-dose oral prolonged-release oxycodone/naloxone from WHO-step i drugs in elderly patients with chronic pain at high risk of early opioid discontinuation

    Get PDF
    Chronic pain has a high prevalence in the aging population. Strong opioids also should be considered in older people for the treatment of moderate to severe pain or for pain that impairs functioning and the quality of life. This study aimed to assess the efficacy and safety of the direct switch to low-dose strong opioids (World Health Organization-Step III drugs) in elderly, opioid-naive patients

    Experimental evidence of thermal fluctuations on the X-ray absorption near-edge structure at the aluminum K-edge

    Full text link
    After a review of temperature-dependent experimental x-ray absorption near-edge structure (XANES) and related theoretical developments, we present the Al K-edge XANES spectra of corundum and beryl for temperature ranging from 300K to 930K. These experimental results provide a first evidence of the role of thermal fluctuation in XANES at the Al K-edge especially in the pre-edge region. The study is carried out by polarized XANES measurements of single crystals. For any orientation of the sample with respect to the x-ray beam, the pre-edge peak grows and shifts to lower energy with temperature. In addition temperature induces modifications in the position and intensities of the main XANES features. First-principles DFT calculations are performed for both compounds. They show that the pre-edge peak originates from forbidden 1s to 3s transitions induced by vibrations. Three existing theoretical models are used to take vibrations into account in the absorption cross section calculations: i) an average of the XANES spectra over the thermal displacements of the absorbing atom around its equilibrium position, ii) a method based on the crude Born-Oppenheimer approximation where only the initial state is averaged over thermal displacements, iii) a convolution of the spectra obtained for the atoms at the equilibrium positions with an approximate phonon spectral function. The theoretical spectra so obtained permit to qualitatively understand the origin of the spectral modifications induced by temperature. However the correct treatment of thermal fluctuation in XANES spectroscopy requires more sophisticated theoretical tools
    • …
    corecore