10 research outputs found

    Photoluminescence study of excitons in homoepitaxial GaN

    Get PDF
    High-resolution photoluminescence spectra have been measured in high-quality homoepitaxial GaN grown on a free-standing GaN substrate with lower residual strain than in previous work. Unusually strong and well-resolved excitonic lines were observed. Based on free- and bound exciton transitions some important GaN parameters are derived. The Arrhenius plot of the free A exciton recombination yields a binding energy of 24.7 meV. Based on this datum, an accurate value for the band-gap energy, EG(4.3 K) = 3.506 eV, can be given. From the donor bound excitons and their “two-electron” satellites, the exciton localization energy and donor ionization energy are deduced. Finally, estimates of the electron and hole masses have been obtained within the effective mass [email protected] ; [email protected]

    Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures

    Get PDF
    Ga-face AlGaN/GaN heterostructures with different sheet carrier concentrations have been studied by photoluminescence and Raman spectroscopy. Compared to bulk GaN, an energy shift of the excitonic emission lines towards higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. This strain was confirmed by the shift of the E2 Raman line, from which biaxial compressive stresses ranging between 0.34 and 1.7 GPa were deduced. The spontaneous and piezoelectric polarizations for each layer of the heterostructures have been also calculated. The analysis of these quantities clarified the influence of the residual stress on the sheet electron concentration (ns). Possible causes for the discrepancies between the calculated and experimentally determined sheet carrier densities are briefly [email protected] ; [email protected]

    Depth-Dependent Investigation of Defects and Impurity Doping in GaN/Sapphire Using Scanning Electron Microscopy and Cathodoluminescence Spectroscopy

    Get PDF
    Cathodoluminescence (CL) imaging and temperature-dependent cathodoluminescence spectroscopy (CLS) have been used to probe the spatial distribution and energies of electronic defects near GaN/Al2O3 interfaces grown by hydride vapor phase epitaxy (HVPE). Cross sectional secondary electron microscopy imaging, CLS, and CL imaging show systematic variations in defect emissions with a wide range of HVPE GaN/sapphire electronic properties. These data, along with electrochemical capacitance–voltage profiling and secondary ion mass spectrometry provide a consistent picture of near-interface doping by O out-diffusion from Al2O3 into GaN over hundreds of nanometers. Low-temperature CL spectra exhibit a new donor level at 3.447 meV near the interface for such samples, characteristic of O impurities spatially localized to the nanoscale interface. CLS emissions indicate the formation of amorphous Al–N–O complexes at 3.8 eV extending into the Al2O3 near the GaN/sapphire interface. CLS and CL images also reveal emissions due to excitons bound to stacking faults and cubic phase GaN. The temperature dependence of the various optical transitions in the 10–300 K range provides additional information to identify the near interface defects and impurity doping
    corecore