1,090 research outputs found
Magnetic trapping of ultracold neutrons
Three-dimensional magnetic confinement of neutrons is reported. Neutrons are
loaded into an Ioffe-type superconducting magnetic trap through inelastic
scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low
energy and in the appropriate spin state are confined by the magnetic field
until they decay. The electron resulting from neutron decay produces
scintillations in the liquid helium bath that results in a pulse of extreme
ultraviolet light. This light is frequency downconverted to the visible and
detected. Results are presented in which 500 +/- 155 neutrons are magnetically
trapped in each loading cycle, consistent with theoretical predictions. The
lifetime of the observed signal, 660 s +290/-170 s, is consistent with the
neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review
Constraints on inelastic dark matter from XENON10
It has been suggested that dark matter particles which scatter inelastically
from detector target nuclei could explain the apparent incompatibility of the
DAMA modulation signal (interpreted as evidence for particle dark matter) with
the null results from CDMS-II and XENON10. Among the predictions of
inelastically interacting dark matter are a suppression of low-energy events,
and a population of nuclear recoil events at higher nuclear recoil equivalent
energies. This is in stark contrast to the well-known expectation of a falling
exponential spectrum for the case of elastic interactions. We present a new
analysis of XENON10 dark matter search data extending to E keV
nuclear recoil equivalent energy. Our results exclude a significant region of
previously allowed parameter space in the model of inelastically interacting
dark matter. In particular, it is found that dark matter particle masses
GeV are disfavored.Comment: 8 pages, 4 figure
A search for light dark matter in XENON10 data
We report results of a search for light (<10 GeV) particle dark matter with
the XENON10 detector. The event trigger was sensitive to a single electron,
with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear
recoil energy. Considering spin-independent dark matter-nucleon scattering, we
exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle
mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic
dark matter interpretations of excess low-energy events observed by CoGeNT and
CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains
erratum. Note v3==v2 but without \linenumber
First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg
xenon dual phase time projection chamber (XeTPC) to search for dark matter
weakly interacting massive particles (WIMPs). The detector measures
simultaneously the scintillation and the ionization produced by radiation in
pure liquid xenon, to discriminate signal from background down to 4.5 keV
nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired
between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4
kg, excludes previously unexplored parameter space, setting a new 90% C.L.
upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x
10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a
WIMP mass of 30 GeV/c^2. This result further constrains predictions of
supersymmetric models.Comment: accepted for publication in Phys. Rev. Let
Promiscuous actions of small molecule inhibitors of the protein kinase D-class IIa HDAC axis in striated muscle
AbstractPKD-mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö-6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö-6976 triggered calcium signaling and activated stress-inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö-6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD
Status of the LUX Dark Matter Search
The Large Underground Xenon (LUX) dark matter search experiment is currently
being deployed at the Homestake Laboratory in South Dakota. We will highlight
the main elements of design which make the experiment a very strong competitor
in the field of direct detection, as well as an easily scalable concept. We
will also present its potential reach for supersymmetric dark matter detection,
within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc
Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare
low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The
radiogenic backgrounds in the LUX detector have been measured and compared with
Monte Carlo simulation. Measurements of LUX high-energy data have provided
direct constraints on all background sources contributing to the background
model. The expected background rate from the background model for the 85.3 day
WIMP search run is
~events~keV~kg~day
in a 118~kg fiducial volume. The observed background rate is
~events~keV~kg~day,
consistent with model projections. The expectation for the radiogenic
background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
3D Position Sensitive XeTPC for Dark Matter Search
The technique to realize 3D position sensitivity in a two-phase xenon time
projection chamber (XeTPC) for dark matter search is described. Results from a
prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark
Matter and Dark Energy in the Universe
- …