425 research outputs found

    Cardiac Resynchronization With Sequential Biventricular Pacing for the Treatment of Moderate-to-Severe Heart Failure

    Get PDF
    ObjectivesThe InSync III study evaluated sequential cardiac resynchronization therapy (CRT) in patients with moderate-to-severe heart failure and prolonged QRS.BackgroundSimultaneous CRT improves hemodynamic and clinical performance in patients with moderate-to-severe heart failure (HF) and a wide QRS. Recent evidence suggests that sequentially stimulating the ventricles might provide additional benefit.MethodsThis multicenter, prospective, nonrandomized, six-month trial enrolled a total of 422 patients to determine the effectiveness of sequential CRT in patients with New York Heart Association (NYHA) functional class III or IV HF and a prolonged QRS. The study evaluated: whether patients receiving sequential CRT for six months experienced improvement in 6-min hall walk (6MHW) distance, NYHA functional class, and quality of life (QoL) over control group patients from the reported Multicenter InSync Randomized Clinical Evaluation (MIRACLE) trial; whether sequential CRT increased stroke volume compared to simultaneous CRT; and whether an increase in stroke volume translated into greater clinical improvements compared to patients receiving simultaneous CRT.ResultsInSync III patients experienced greater improvement in 6MHW, NYHA functional class, and QoL at six months compared to control (all p < 0.0001). Optimization of the sequential pacing increased (median 7.3%) stroke volume in 77% of patients. No additional improvement in NYHA functional class or QoL was seen compared to the simultaneous CRT group; however, InSync III patients demonstrated greater exercise capacity.ConclusionsSequential CRT provided most patients with a modest increase in stroke volume above that achieved during simultaneous CRT. Patients receiving sequential CRT had improved exercise capacity, but no change in functional status or QoL

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry

    Get PDF
    Introduction The success of pulmonary vein isolation (PVI) for atrial fibrillation (AF) may be improved if stable AF sources identified by Focal Impulse and Rotor Mapping (FIRM) are also eliminated. The long-term results of this approach are unclear outside the centers where FIRM was developed; thus, we assessed outcomes of FIRM-guided AF ablation in the first cases at 10 experienced centers. Methods We prospectively enrolled n = 78 consecutive patients (61 ± 10 years) undergoing FIRM guided ablation for persistent (n = 48), longstanding persistent (n = 7), or paroxysmal (n = 23) AF. AF recordings from both atria with a 64-pole basket catheter were analyzed using a novel mapping system (Rhythm View™; Topera Inc., CA, USA). Identified rotors/focal sources were ablated, followed by PVI. Results Each institution recruited a median of 6 patients, each of whom showed 2.3 ± 0.9 AF rotors/focal sources in diverse locations. 25.3% of all sources were right atrial (RA), and 50.0% of patients had ≥1 RA source. Ablation of all sources required a total of 16.6 ± 11.7 minutes, followed by PVI. On >1 year follow-up with a 3-month blanking period, 1 patient lost to follow-up (median time to 1st recurrence: 245 days, IQR 145–354), single-procedure freedom from AF was 87.5% (patients without prior ablation; 35/40) and 80.5% (all patients; 62/77) and similar for persistent and paroxysmal AF (P = 0.89). Conclusions Elimination of patient-specific AF rotors/focal sources produced freedom-from-AF of ≈80% at 1 year at centers new to FIRM. FIRM-guided ablation has a rapid learning curve, yielding similar results to original FIRM reports in each center’s first cases

    Searches for gravitational waves from known pulsars with S5 LIGO data

    Get PDF
    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537 – 6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 × 10^(–26) for J1603 – 7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 × 10^(–8) for J2124 – 3358
    • …
    corecore