13,064 research outputs found
The order parameter of the chiral Potts model
An outstanding problem in statistical mechanics is the order parameter of the
chiral Potts model. An elegant conjecture for this was made in 1983. It has
since been successfully tested against series expansions, but as far as the
author is aware there is as yet no proof of the conjecture. Here we show that
if one makes a certain analyticity assumption similar to that used to derive
the free energy, then one can indeed verify the conjecture. The method is based
on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and
Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos
correcte
Some comments on developments in exact solutions in statistical mechanics since 1944
Lars Onsager and Bruria Kaufman calculated the partition function of the
Ising model exactly in 1944 and 1949. Since then there have been many
developments in the exact solution of similar, but usually more complicated,
models. Here I shall mention a few, and show how some of the latest work seems
to be returning once again to the properties observed by Onsager and Kaufman.Comment: 28 pages, 5 figures, section on six-vertex model revise
Efficient simulation of relativistic fermions via vertex models
We have developed an efficient simulation algorithm for strongly interacting
relativistic fermions in two-dimensional field theories based on a formulation
as a loop gas. The loop models describing the dynamics of the fermions can be
mapped to statistical vertex models and our proposal is in fact an efficient
simulation algorithm for generic vertex models in arbitrary dimensions. The
algorithm essentially eliminates critical slowing down by sampling two-point
correlation functions and it allows simulations directly in the massless limit.
Moreover, it generates loop configurations with fluctuating topological
boundary conditions enabling to simulate fermions with arbitrary periodic or
anti-periodic boundary conditions. As illustrative examples, the algorithm is
applied to the Gross-Neveu model and to the Schwinger model in the strong
coupling limit.Comment: 5 pages, 4 figure
Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions
We consider the six-vertex model with anti-periodic boundary conditions
across a finite strip. The row-to-row transfer matrix is diagonalised by the
`commuting transfer matrices' method. {}From the exact solution we obtain an
independent derivation of the interfacial tension of the six-vertex model in
the anti-ferroelectric phase. The nature of the corresponding integrable
boundary condition on the spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur
Auxiliary matrices for the six-vertex model and the algebraic Bethe ansatz
We connect two alternative concepts of solving integrable models, Baxter's
method of auxiliary matrices (or Q-operators) and the algebraic Bethe ansatz.
The main steps of the calculation are performed in a general setting and a
formula for the Bethe eigenvalues of the Q-operator is derived. A proof is
given for states which contain up to three Bethe roots. Further evidence is
provided by relating the findings to the six-vertex fusion hierarchy. For the
XXZ spin-chain we analyze the cases when the deformation parameter of the
underlying quantum group is evaluated both at and away from a root of unity.Comment: 32 page
Two-dimensional Rydberg gases and the quantum hard squares model
We study a two-dimensional lattice gas of atoms that are photo-excited to
high-lying Rydberg states in which they interact via the van-der-Waals
interaction. We explore the regime of dominant nearest neighbor interaction
where this system is intimately connected to a quantum version of Baxter's hard
squares model. We show that the strongly correlated ground state of the Rydberg
gas can be analytically described by a projected entangled pair state that
constitutes the ground state of the quantum hard squares model. This
correspondence allows us to identify a first order phase boundary where the
Rydberg gas undergoes a transition from a disordered (liquid) phase to an
ordered (solid) phase
Absence of Phase Transition for Antiferromagnetic Potts Models via the Dobrushin Uniqueness Theorem
We prove that the -state Potts antiferromagnet on a lattice of maximum
coordination number exhibits exponential decay of correlations uniformly at
all temperatures (including zero temperature) whenever . We also prove
slightly better bounds for several two-dimensional lattices: square lattice
(exponential decay for ), triangular lattice (), hexagonal
lattice (), and Kagom\'e lattice (). The proofs are based on
the Dobrushin uniqueness theorem.Comment: 32 pages including 3 figures. Self-unpacking file containing the tex
file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 ps file
Auxiliary matrices for the six-vertex model at roots of 1 and a geometric interpretation of its symmetries
The construction of auxiliary matrices for the six-vertex model at a root of
unity is investigated from a quantum group theoretic point of view. Employing
the concept of intertwiners associated with the quantum loop algebra
at a three parameter family of auxiliary matrices
is constructed. The elements of this family satisfy a functional relation with
the transfer matrix allowing one to solve the eigenvalue problem of the model
and to derive the Bethe ansatz equations. This functional relation is obtained
from the decomposition of a tensor product of evaluation representations and
involves auxiliary matrices with different parameters. Because of this
dependence on additional parameters the auxiliary matrices break in general the
finite symmetries of the six-vertex model, such as spin-reversal or spin
conservation. More importantly, they also lift the extra degeneracies of the
transfer matrix due to the loop symmetry present at rational coupling values.
The extra parameters in the auxiliary matrices are shown to be directly related
to the elements in the enlarged center of the quantum loop algebra
at . This connection provides a geometric
interpretation of the enhanced symmetry of the six-vertex model at rational
coupling. The parameters labelling the auxiliary matrices can be interpreted as
coordinates on a three-dimensional complex hypersurface which remains invariant
under the action of an infinite-dimensional group of analytic transformations,
called the quantum coadjoint action.Comment: 52 pages, TCI LaTex, v2: equation (167) corrected, two references
adde
Star-Triangle Relation for a Three Dimensional Model
The solvable -chiral Potts model can be interpreted as a
three-dimensional lattice model with local interactions. To within a minor
modification of the boundary conditions it is an Ising type model on the body
centered cubic lattice with two- and three-spin interactions. The corresponding
local Boltzmann weights obey a number of simple relations, including a
restricted star-triangle relation, which is a modified version of the
well-known star-triangle relation appearing in two-dimensional models. We show
that these relations lead to remarkable symmetry properties of the Boltzmann
weight function of an elementary cube of the lattice, related to spatial
symmetry group of the cubic lattice. These symmetry properties allow one to
prove the commutativity of the row-to-row transfer matrices, bypassing the
tetrahedron relation. The partition function per site for the infinite lattice
is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted
figures replaced
Auxiliary matrices on both sides of the equator
The spectra of previously constructed auxiliary matrices for the six-vertex
model at roots of unity are investigated for spin-chains of even and odd
length. The two cases show remarkable differences. In particular, it is shown
that for even roots of unity and an odd number of sites the eigenvalues contain
two linear independent solutions to Baxter's TQ-equation corresponding to the
Bethe ansatz equations above and below the equator. In contrast, one finds for
even spin-chains only one linear independent solution and complete strings. The
other main result is the proof of a previous conjecture on the degeneracies of
the six-vertex model at roots of unity. The proof rests on the derivation of a
functional equation for the auxiliary matrices which is closely related to a
functional equation for the eight-vertex model conjectured by Fabricius and
McCoy.Comment: 22 pages; 2nd version: one paragraph added in the conclusion and some
typos correcte
- …