The spectra of previously constructed auxiliary matrices for the six-vertex
model at roots of unity are investigated for spin-chains of even and odd
length. The two cases show remarkable differences. In particular, it is shown
that for even roots of unity and an odd number of sites the eigenvalues contain
two linear independent solutions to Baxter's TQ-equation corresponding to the
Bethe ansatz equations above and below the equator. In contrast, one finds for
even spin-chains only one linear independent solution and complete strings. The
other main result is the proof of a previous conjecture on the degeneracies of
the six-vertex model at roots of unity. The proof rests on the derivation of a
functional equation for the auxiliary matrices which is closely related to a
functional equation for the eight-vertex model conjectured by Fabricius and
McCoy.Comment: 22 pages; 2nd version: one paragraph added in the conclusion and some
typos correcte