336 research outputs found
Efficient Hadronic Operators in Lattice Gauge Theory
We study operators to create hadronic states made of light quarks in quenched
lattice gauge theory. We construct non-local gauge-invariant operators which
provide information about the spatial extent of the ground state and excited
states. The efficiency of the operators is shown by looking at the wave
function of the first excited state, which has a node as a function of the
spatial extent of the operator. This allows one to obtain an uncontaminated
ground state for hadrons.Comment: 18 pages, Latex text, followed by 11 postscript figures in
self-unpacking file. Also available at
ftp://suna.amtp.liv.ac.uk/pub/cmi/wavefn
Nucleon and gamma N -> Delta lattice form factors in a constituent quark model
A covariant quark model, based both on the spectator formalism and on vector
meson dominance, and previously calibrated by the physical data, is here
extended to the unphysical region of the lattice data by means of one single
extra adjustable parameter - the constituent quark mass in the chiral limit. We
calculated the Nucleon (N) and the gamma N -> Delta form factors in the
universe of values for that parameter described by quenched lattice QCD. A
qualitative description of the Nucleon and gamma N -> Delta form factors
lattice data is achieved for light pions.Comment: To appear in J.Phys.
Chiral and Continuum Extrapolation of Partially-Quenched Hadron Masses
Using the finite-range regularisation (FRR) of chiral effective field theory,
the chiral extrapolation formula for the vector meson mass is derived for the
case of partially-quenched QCD. We re-analyse the dynamical fermion QCD data
for the vector meson mass from the CP-PACS collaboration. A global fit,
including finite lattice spacing effects, of all 16 of their ensembles is
performed. We study the FRR method together with a naive polynomial approach
and find excellent agreement ~1% with the experimental value of M_rho from the
former approach. These results are extended to the case of the nucleon mass.Comment: 6 pages, Contribution to Lattice2005, PoS styl
Fitting Correlated Hadron Mass Spectrum Data
We discuss fitting hadronic Green functions versus time to extract mass
values in quenched lattice QCD. These data are themselves strongly correlated
in . With only a limited number of data samples, the method of minimising
correlated is unreliable. We explore several methods of modelling the
correlations among the data set by a few parameters which then give a stable
and sensible fit even if the data sample is small. In particular these models
give a reliable estimate of the goodness of fit.Comment: 14 pages, Latex text, followed by 3 postscript figures in
self-unpacking file. Also available at
ftp://suna.amtp.liv.ac.uk/pub/cmi/corfit
Thermodynamics of Two Flavor QCD to Sixth Order in Quark Chemical Potential
We present results of a simulation of 2-flavor QCD on a 4x16^3 lattice using
p4-improved staggered fermions with bare quark mass m/T=0.4. Derivatives of the
thermodynamic grand canonical partition function Z(V,T,mu_u,mu_d) with respect
to chemical potentials mu_(u,d) for different quark flavors are calculated up
to sixth order, enabling estimates of the pressure and the quark number density
as well as the chiral condensate and various susceptibilities as functions of
mu_q = (mu_u + mu_d)/2 via Taylor series expansion. Furthermore, we analyze
baryon as well as isospin fluctuations and discuss the relation between the
radius of convergence of the Taylor series and the chiral critical point in the
QCD phase diagram. We argue that bulk thermodynamic observables do not, at
present, provide direct evidence for the existence of a chiral critical point
in the QCD phase diagram. Results are compared to high temperature perturbation
theory as well as a hadron resonance gas model.Comment: 38 pages, 30 encapsulated postscript figures, typo corrected, 1
footnote adde
Unified chiral analysis of the vector meson spectrum from lattice QCD
The chiral extrapolation of the vector meson mass calculated in
partially-quenched lattice simulations is investigated. The leading one-loop
corrections to the vector meson mass are derived for partially-quenched QCD. A
large sample of lattice results from the CP-PACS Collaboration is analysed,
with explicit corrections for finite lattice spacing artifacts. To incorporate
the effect of the opening decay channel as the chiral limit is approached, the
extrapolation is studied using a necessary phenomenological extension of chiral
effective field theory. This chiral analysis also provides a quantitative
estimate of the leading finite volume corrections. It is found that the
discretisation, finite-volume and partial quenching effects can all be very
well described in this framework, producing an extrapolated value of M_\rho in
excellent agreement with experiment. This procedure is also compared with
extrapolations based on polynomial forms, where the results are much less
enlightening.Comment: 30 pages, 13 fig
Results from Lattice QCD
I present our recent results on the critical end point in the \mu_B-T phase
diagram of QCD with two flavours of light dynamical quarks and compare them
with similar results from other groups. Implications for a possible energy scan
at the RHIC are discussed. I also comment briefly on the new results of great
relevance to heavy ion collisions from finite temperature lattice QCD
simulations on speed of sound, specific heat and on the fate of J/\psi.Comment: Invited Plenary Talk given at 5th International Conference on Physics
and Astrophysics of Quark Gluon Plasma, Kolkata, India, February 8-12, 2005;
LaTeX in Journal of Physics G style; 9 pages including figure
- …
