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1. Introduction

Current computers and algorithms enable lattice gauge theorists to perform simulations of
QCD over a relatively wide range of parameters, even in the dynamical-fermion case. However,
despite the enormous progress made, physical values of the light quark masses are still not within
reach. In order for the lattice to make predictions at these quark masses, a chiral extrapolation
procedure is inevitable.

The traditional (dimensional regularised) chiral perturbation theory approach is well known
to suffer from convergence problems. As a symptom of this, very poor agreement is found when
lattice data is fitted to a truncated (dim-reg) chiral series using the known values of the non-analytic
(in quark mass) coefficients [1]. This situation can be understood on physical grounds due to
the fact that chiral perturbation theory is an effective theory. When effective theories are applied
beyond their range of validity, more and more interaction terms are typically required to mop up
for the physics that the effective theory intrinsically misses. Such a situation occurs in the case of
chiral perturbation theory as the quark mass becomes moderate. In this case, as the light quantum
fields (i.e. the pions) become massive and their Compton wavelengths decrease in size, they begin
to probe the quark nature underlying the hadronic fields in the effective theory. The chiral effective
theory therefore breaks down.

Fortunately we have comprehensive lattice data over a wide range of quark masses in the
region where the chiral perturbation theory is no longer valid. This data tells us that the hadonic
masses are typically very linear in the quark mass, mg, for my £ ms/2 ~ 50 MeV.

The aim of using chiral extrapolation techniques is therefore to respect both the properties
of the effective theory at small mg, and the lattice data at moderate to large mq. The finite-range
regulator (FRR) or Adelaide approach to chiral effective theory provides such a method. In this
approach, a scale, A, is introduced representing the transition scale where pion interaction effects
should be moderated. This scale is introduced naturally in a form factor for the pion-hadron inter-
actions. In this formalism, pion loops are moderated like A/mgy as mq grows, and FRR reproduces
(by construction) the structure of traditional dim-reg chiral effective theory in the mg — 0 limit.
The FRR approach therefore provides a marriage between chiral effective theory and lattice data.

In this talk, we extend previous FRR work to the vector meson mass in the “partially-quenched”
case (i.e. when mg™ # mYa). This method is then applied to a dataset from the CP-PACS Collabora-
tion [4]. An extension of this work to the partially-quenched nucleon mass is also briefly discussed.
A full description of this work can be found in [2, 3]

2. The FRR Approach

We introduce the nomenclature My ps) (B, S;v1,Vz2) for the vector (pseudoscalar) meson mass
calculated with a gauge coupling of 3, sea quark mass of s, and valence quark masses of v, and v».
The FRR expression for the vector mass is [2, 3]

M3 (B,5%,V) = (0 +a2MBs(B, SV, V) + aaMps(B,S %, V) +...)* + 1ot (2.1)

where  Stor = Zhn(MBs(B,S;SV)) + 2w (M3s(B,SS,V))
+ Zpnp(M3s(B,S:5,v), Mas(B,S v, V), Mas(B, S5, 9)).
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Note that we derive this expression for vector mesons composed only of degenerate valence quarks.
The X terms are self-energies and are diagrammatically depicted in Fig. 1 of [2]. We give
below the definition of ¥,; see [2] for expressions for =%, and Zppp.

5o _ _Gopnbo /w K2, (K) dk
o 12212 Jo  wi(k)
ith 2(k) = k®+M34(B,s, d k) = Ay
wi wr(K) = kK*+Mpg(B,ss,v)  an u(k) = TR

Here gewpnlp defines the coupling of p — wm with gy = 16 GeV~1 and the physical p—mass
Hp = 770 MeV. The form factor u(k) has a natural scale, A, which was referred to in the previous
section. Finally note that Eq. (2.1) reproduces dim-reg xPT as M — 0.

The momentum integrals in the X definitions are discretised to the lattice using

0 3
47'[/ kzdk:/d3kz 1 (2_") 3
0 V \ a kefoke

with k;, being constrained by the finite periodic volume of the lattice.

3. CP-PACSData

Data for the vector meson mass was taken from the CP-PACS Collaboration [4]. These sim-
ulations used two-flavours of mean-field improved Wilson fermions with Iwasaki glue. There is,
therefore, the possibility of some residual &'(a) systematics. The CP-PACS dataset comprises of
four different B’s, with four k2 values for each 3 value, making a total of 16 independent ensem-
bles. In addition, each ensemble has five different valence quarks, meaning that there are a total
of 80 (degenerate) meson masses. We represent each of these masses by a 1000-element bootstrap
ensemble which is Gaussianly-distributed about the CP-PACS central value with the FWHM set
to the quoted error in [4]. The parameter space spanned by this CP-PACS dataset is displayed in
Fig. 1.

4. Fitting Procedure

The procedure used to fit the CP-PACS data to the FRR functions is as follows. Prior to the
extrapolation, we first convert all masses into physical units using both the string tension, and
hadronic scale, rq. This has the following two advantages compared to an analysis with dimension-
less hadron masses: different ensemble’s data can be combined together in a global fit; and since
dimensionful mass predictions from lattice simulations are ratios of lattice mass estimates, some
systematic and statistical errors will cancel.

We then use the FRR functional form below to fit the data.

VM (B, v)—Sr0r = (884 Xy + Xoa?) +8oMBs( B, S, V) +asMis( B, V) +-36MEs( B, Siv V).

4.1)
This is simply Eq. (2.1) modified by the addition of ¢'(a,&) terms to the ag coefficient in order
to model the lattice spacing systematics. We tested the addition of terms &'(a,a?) to the az4e
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Figure 1: CP-PACS parameter range in lattice spacing, a (from rg) and Mgg“, where “unit” refers to the
unitary point (i.e. maeﬂ = rr%a'). The physical light pseudoscalar mesons are included for reference.

coefficients as well, but found that these terms were either compatible with zero, or lead to unstable
fits. Variants of Eq. (4.1) were used to study the stability of the fit procedure: including the Xa
term, or alternatively setting X; = 0; and including the “cubic” aelVng term, or alternatively setting
ag = 0 (the “quadratic” fit).

As well as the FRR function in Eq. (4.1), we fitted the data to a naive polynomial fit function
defined by Eq. (4.1) but with o7 set to zero (labelled as Naive in the following).

The above fitting functions were used in a “global” fit of all the CP-PACS data. Since there
are 80 meson mass datapoints (see Sec. 3) a highly constrained fit was obtained since the number
of fitting parameters is tiny compared to 80. See [2, 3] for details of the fit procedure

Recall that in the case of the FRR fit, an extra parameter, A is introduced to govern the sum
of higher-order terms of the expansion with guidance from lattice QCD data. We find that A is
constrained well by the large CP-PACS data set. Figure 2 (upper plot) shows the behaviour of the
x?2 for the above FRR fits. Results for the four variants to Eq. (4.1) as discussed above are shown.
The insert shows the result for the preferred fitting function choice (which is X, = 0 and ag = 0,
see [3]). By increasing x2 by one from its minimum value, we obtain the acceptable range of
A\ = 655(35) MeV.

We find that the FRR approach gives lower x? values than the naive polynomial fits; that the
chiral series (in the FRR approach) is very convergent (i.e. the inclusion of the ﬁ(MSS) term is
irrelevant in these fits); and that ry is a more stable quantity to set the scale than the string tension.

The success of the FRR approach in fitting the data can be seen in Fig. 3 by comparing the raw
CP-PACS data in the upper plot with the data corrected according to Eg. (4.1) in the lower plot.

5. M, and M, estimate

The final value estimate for M, is obtained using the ag» 4 parameters from the fit, and by
setting a= 0, and Mps to the physical pion mass. We obtain

MERR = 778(4)+5+8 MeV  and MJ2“® = 825(4)2 MeV (5.1)
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Figure2: Upper: x2/d.o.f. versus the FRR A parameter. (The insert shows a close up of the x2 minimum
region.) Lower: M, prediction versus A. The vertical dashed lines represent A = 655(35) MeV.

where the errors are statistical, fit procedure, and, in the FRR case, from the variation in A. This
last error is obtained from the lower plot in Fig. 2, where the variation of the M, prediction as a
function of A is shown. Using the range A = 655(35) MeV (see Sec. 4) we obtain the third error.

Note that we do not include an error estimate due to the uncertainty in rq itself, nor from the
fact that the number of dynamical flavours, N # 2 + 1.

As can be seen the errors from the various sources are typically around 1%, including the
uncertainty due to the A value. Note also that the FRR M, estimate is in comfortable agreement
with the experimental value (in contrast with the naive polynomial fit).

In [4], nucleon mass data was also published. The FRR formula for the partially-quenched
nucleon case was derived and a similar fitting procedure to that outlined here for the vector case
was applied. The estimate of the nucleon mass from this method is (full details will appear in [3])

MERR = 965(15)+4+12 MeV  and MY = 1023(15)*¢ MeV.

In this case the agreement with the physical value is reasonable in the FRR case (and non-existent
in the naive polynomial case). Again, the dependency of My on A is modest.
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Figure 3: Upper: The raw 80 CP-PACS data. Lower: The same data after correction according to Eq. (4.1).

6. Conclusions

We have generalised the FRR chiral approach to “partially-quenched” vector meson and nu-
cleon mass cases, obtaining continuum estimates of M, and My which are in agreement with
experimental values. The estimated systematic errors in the masses due to the fit procedure are
~1—2%. The FRR approach was found to be “model independent” in the sense that the physi-
cal predictions’ dependencies on the A-parameter was found to be of the same order as the other
systematic error sources.
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