30 research outputs found

    Natural anti-CCR5 antibodies in HIV-infection and -exposure

    Get PDF
    Natural antibodies constitute a first-line of defence against pathogens; they may also play other roles in immune regulation and homeostasis, through their ability to bind host antigens, surface molecules and receptors. Natural anti-CCR5 antibodies can be decisive in preventing HIV infection in mucosal tissues and offer prompt and effective protection just at major sites of virus entry. Among natural anti-CCR5 antibodies, IgG and IgA to the ECL1 domain have been shown to block HIV effectively and durably without causing harm to the host. Their biological properties and their uncommon generation in subsets of HIV-infected and HIV-exposed individuals (so called ESN) will be introduced and discussed, with the aim at exploiting their potential in therapy and prevention

    CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis

    Get PDF
    Background: Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Methods and results: Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). Conclusions: The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations

    Host Genetics and HIV-1: The Final Phase?

    Get PDF
    This is a crucial transition time for human genetics in general, and for HIV host genetics in particular. After years of equivocal results from candidate gene analyses, several genome-wide association studies have been published that looked at plasma viral load or disease progression. Results from other studies that used various large-scale approaches (siRNA screens, transcriptome or proteome analysis, comparative genomics) have also shed new light on retroviral pathogenesis. However, most of the inter-individual variability in response to HIV-1 infection remains to be explained: genome resequencing and systems biology approaches are now required to progress toward a better understanding of the complex interactions between HIV-1 and its human host

    Clinical significance of HIV-1 coreceptor usage

    Get PDF
    The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage

    Moloney Murine Leukemia Virus Integrase Protein Augments Viral DNA Synthesis in Infected Cells

    No full text
    Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (ΔIN) or 34 C-terminal amino acid residues (Δ34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Δ34 and ΔIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Δ34 and ΔIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of ΔIN mutant virions could not be complemented with the Δ34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses

    Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral drug-resistant human immunodeficiency virus type 1.

    No full text
    Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1
    corecore