31 research outputs found

    Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia

    Get PDF
    The poisoning of rural populations in South and Southeast Asia due to high groundwater arsenic concentrations is one of the world’s largest ongoing natural disasters. It is important to consider environmental processes related to the release of geogenic arsenic, including geomorphological and organic geochemical processes. Arsenic is released from sediments when iron-oxide minerals, onto which arsenic is adsorbed or incorporated, react with organic carbon (OC) and the OC is oxidised. In this study we build a new geomorphological framework for Kandal Province, a highly studied arsenic affected region of Cambodia, and tie this into wider regional environmental change throughout the Holocene. Analyses shows that the concentration of OC in the sediments is strongly inversely correlated to grainsize. Furthermore, the type of OC is also related to grain size with the clay containing mostly (immature) plant derived OC and sand containing mostly thermally mature derived OC. Finally, analyses indicate that within the plant derived OC relative oxidation is strongly grouped by stratigraphy with the older bound OC more oxidised than younger OC

    Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels

    Get PDF
    Introduction: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer’s disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this. Methods: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer’s Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated. Results: H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (β = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03). Conclusions: These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression

    Deletion of Abi3/Gngt2 influences age-progressive amyloid β and tau pathologies in distinctive ways.

    No full text
    BACKGROUND: The S209F variant of Abelson Interactor Protein 3 (ABI3) increases risk for Alzheimer\u27s disease (AD), but little is known about its function in relation to AD pathogenesis. METHODS: Here, we use a mouse model that is deficient in Abi3 locus to study how the loss of function of Abi3 impacts two cardinal neuropathological hallmarks of AD-amyloid β plaques and tau pathology. Our study employs extensive neuropathological and transcriptomic characterization using transgenic mouse models and adeno-associated virus-mediated gene targeting strategies. RESULTS: Analysis of bulk RNAseq data confirmed age-progressive increase in Abi3 levels in rodent models of AD-type amyloidosis and upregulation in AD patients relative to healthy controls. Using RNAscope in situ hybridization, we localized the cellular distribution of Abi3 in mouse and human brains, finding that Abi3 is expressed in both microglial and non-microglial cells. Next, we evaluated Abi3 CONCLUSIONS: These data provide an important experimental framework for understanding the role of Abi3-Gngt2 function and early inflammatory gliosis in AD. Our studies also demonstrate that inflammatory gliosis could have opposing effects on amyloid and tau pathology, highlighting the unpredictability of targeting immune pathways in AD
    corecore