614 research outputs found

    How relevant is the torus activity/geometry for the TeV gamma-rays emitted in the jet of M87 ?

    Get PDF
    Motivated by unification schemes of active galactic nuclei, we review evidence for the existence of a small-scale dust torus in M87, a Fanaroff-Riley Class I radio galaxy. Since there is no direct evidence of any thermal emission from its torus we consider indirect evidence, such as BLR activity and ageing arguments to model the cold dust structure of M87. In the context of the jet -- accretion disk -- torus symbiosis we discuss the interactions of GeV and TeV gamma-rays produced in the jet of M87 with the infrared radiation fields external to the jet, produced by a less active torus. A thin and cold torus with less defined outer boundaries could still posses problems to some of the TeV emission from the jet.Comment: 2 pages, to appear in Proceedings of the conference on Active Galactic Nuclei: from Central Engine to Host Galaxy, meeting held in Meudon, France, July 23-27, 2002, Eds.: S. Collin, F. Combes and I. Shlosma

    The Directional Dependence of Apertures, Limits and Sensitivity of the Lunar Cherenkov Technique to a UHE Neutrino Flux

    Get PDF
    We use computer simulations to obtain the directional-dependence of the lunar Cherenkov technique for ultra-high energy (UHE) neutrino detection. We calculate the instantaneous effective area of past lunar Cherenkov experiments as a function of neutrino arrival direction, and hence the directional-dependence of the combined limit imposed by GLUE and the experiment at Parkes. We also determine the directional dependence of the aperture of future planned experiments with ATCA, ASKAP and the SKA to a UHE neutrino flux, and calculate the potential annual exposure to astronomical objects as a function of angular distance from the lunar trajectory through celestial coordinates.Comment: 17 pages, 7 figures; Submitted to Astroparticle Physic

    Gamma ray and infrared emission from the M87 jet and torus

    Get PDF
    The existence of intrinsic obscuration of Fanaroff-Riley I objects is a controversial topic. M87, the nearest such object, is puzzling in that although it has very massive central black hole it has a relatively low luminosity, suggesting it is in a dormant state. Despite of its proximity to us (16 Mpc) it is not known with certainty whether or not M87 has a dusty torus. Infrared observations indicate that if a torus exists in M87 it must have a rather low infrared luminosity. Using arguments from unification theory of active galactic nuclei, we have earlier suggested that the inner parsec-scale region of M87 could still harbour a small torus sufficiently cold such that its infrared emission is dwarfed by the jet emission. The infrared emission from even a small cold torus could affect through photon-photon pair production interactions the escape of 100 GeV to TeV energy gamma rays from the central parsec of M87. The TeV gamma-ray flux from the inner jet of M87 has recently been predicted in the context of the Synchrotron Proton Blazar (SPB) model to extend up to at least 100 GeV (Protheroe, Donea, Reimer, 2002). Subsequently, the detection of gamma-rays above 730 GeV by the HEGRA Cherenkov telescopes has been reported. We discuss the interactions of gamma-rays produced in the inner jet of M87 with the weak infrared radiation expected from a possible dusty small-scale torus, and show that the HEGRA detection shows that the temperature of any torus surrounding the gamma-ray emission region must be cooler than about 250 K. We suggest that if no gamma-rays are in future detected during extreme flaring activity in M87 at other wavelength, this may be expected because of torus heating.Comment: 7 pages, submitted to Prog. Theor. Phys. Suppl., ps fil

    TeV gamma rays and cosmic rays from the nucleus of M87, a mis-aligned BL Lac object

    Get PDF
    The unresolved nuclear region of M87 emits strong non-thermal emission from radio to X-rays. Assuming this emission to originate in the pc scale jet aligned at Ξ∌30∘\theta \sim 30^\circ to the line of sight, we interpret this emission in the context of the Synchrotron Proton Blazar (SPB) model. We find the observed nuclear jet emission to be consistent with M87 being a mis-aligned BL Lac Object and predict gamma-ray emission extending up to at least 100 GeV at a level easily detectable by GLAST and MAGIC, and possibly by VERITAS depending on whether it is high-frequency or low-frequency peaked. Predicted neutrino emission is below the sensitivity of existing and planned neutrino telescopes. Ultra-high energy neutrons produced in pion photoproduction interactions decay into protons after escaping from the host galaxy. Because energetic protons are deflected by the intergalactic magnetic field, the protons from the decay of neutrons emitted in all directions, including along the jet axis where the Doppler factor and hence emitted neutron energies are higher, can contribute to the observed ultra-high energy cosmic rays. We consider the propagation of these cosmic ray protons to Earth and conclude that M87 could account for the observed flux if the extragalactic magnetic field topology were favourable.Comment: 17 pages, 6 figures. 3 additional references plus minor changes, acctepted for publication in Astroparticle Physic

    Small-Angle Scattering and Diffusion: Application to Relativistic Shock Acceleration

    Get PDF
    We investigate ways of accurately simulating the propagation of energetic charged particles over small times where the standard Monte Carlo approximation to diffusive transport breaks down. We find that a small-angle scattering procedure with appropriately chosen step-lengths and scattering angles gives accurate results, and we apply this to the simulation of propagation upstream in relativistic shock acceleration.Comment: 4 pages, 2 figures, proceedings of World Space Environment Forum (WSEF2002) to appear in Space Science Reviews, accepte

    Electromagnetic Cascades and Cascade Nucleosynthesis in the Early Universe

    Get PDF
    We describe a calculation of electromagnetic cascading in radiation and matter in the early universe initiated by the decay of massive particles or by some other process. We have used a combination of Monte Carlo and numerical techniques which enables us to use exact cross sections, where known, for all the relevant processes. In cascades initiated after the epoch of big bang nucleosynthesis Îł\gamma-rays in the cascades will photodisintegrate 4^4He, producing 3^3He and deuterium. Using the observed 3^3He and deuterium abundances we are able to place constraints on the cascade energy deposition as a function of cosmic time. In the case of the decay of massive primordial particles, we place limits on the density of massive primordial particles as a function of their mean decay time, and on the expected intensity of decay neutrinos.Comment: compressed and uuencoded postscript. We now include a comparison with previous work of the photon spectrum in the cascade and the limits we calculate for the density of massive particles. The method of calculation of photon spectra at low energies has been improved. Most figures are revised. Our conclusions are substantially unchange

    Neutrinos Associated With Cosmic Rays of Top-Down Origin

    Get PDF
    Top-down models of cosmic rays produce more neutrinos than photons and more photons than protons. In these models, we reevaluate the fluxes of neutrinos associated with the highest energy cosmic rays in light of mounting evidence that they are protons and not gamma rays. While proton dominance at EeV energies can possibly be achieved by efficient absorption of the dominant high-energy photon flux on universal and galactic photon and magnetic background fields, we show that the associated neutrino flux is inevitably increased to a level where it should be within reach of operating experiments such as AMANDA II, RICE and AGASA. In future neutrino telescopes, tens to a hundred, rather than a few neutrinos per kilometer squared per year, may be detected above 1 PeV.Comment: 16 pages, 4 figure
    • 

    corecore