12 research outputs found

    Tumor-Associated Macrophages (TAMs) Form an Interconnected Cellular Supportive Network in Anaplastic Thyroid Carcinoma

    Get PDF
    BACKGROUND: A relationship between the increased density of tumor-associated macrophages (TAMs) and decreased survival was recently reported in thyroid cancer patients. Among these tumors, anaplastic thyroid cancer (ATC) is one of the most aggressive solid tumors in humans. TAMs (type M2) have been recognized as promoting tumor growth. The purpose of our study was to analyze with immunohistochemistry the presence of TAMs in a series of 27 ATC. METHODOLOGY/PRINCIPAL FINDINGS: Several macrophages markers such as NADPH oxidase complex NOX2-p22phox, CD163 and CD 68 were used. Immunostainings showed that TAMs represent more than 50% of nucleated cells in all ATCs. Moreover, these markers allowed the identification of elongated thin ramified cytoplasmic extensions, bestowing a "microglia-like" appearance on these cells which we termed "Ramified TAMs" (RTAMs). In contrast, cancer cells were totally negative. Cellular stroma was highly simplified since apart from cancer cells and blood vessels, RTAMs were the only other cellular component. RTAMs were evenly distributed and intermingled with cancer cells, and were in direct contact with other RTAMs via their ramifications. Moreover, RTAMs displayed strong immunostaining for connexin Cx43. Long chains of interconnected RTAMs arose from perivascular clusters and were dispersed within the tumor parenchyma. When expressed, the glucose transporter Glut1 was found in RTAMs and blood vessels, but rarely in cancer cells. CONCLUSION: ATCs display a very dense network of interconnected RTAMs in direct contact with intermingled cancer cells. To our knowledge this is the first time that such a network is described in a malignant tumor. This network was found in all our studied cases and appeared specific to ATC, since it was not found in differentiated thyroid cancers specimens. Taken together, these results suggest that RTAMs network is directly related to the aggressiveness of the disease via metabolic and trophic functions which remain to be determined

    Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells.

    No full text
    Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is the third most frequent virus-associated human malignancy. How this tumor escapes immune recognition despite the expression of several viral antigens has remained poorly understood. Our previous in vitro studies have shown that NPC cells release exosomes containing high amounts of galectin-9, a ligand of the membrane receptor Tim-3, which is able to induce apoptosis in mature Th1 lymphocytes. Here, we sought to determine whether galectin-9-carrying exosomes were produced in NPC patients and whether such exosomes might play a role in the immune evasion of NPC cells. We report that galectin-9-containing exosomes are selectively detected in plasma samples from NPC patients and mice xenografted with NPC tumors. The incorporation into exosomes protects galectin-9 against proteolytic cleavage but retains its Tim-3-binding capacity. Importantly, NPC exosomes induce massive apoptosis in EBV-specific CD4+ cells used as a model of target T cells. This effect is inhibited by both anti-Tim-3 and anti-galectin-9 blocking antibodies. These results indicate that blocking galectin-9/Tim-3 interaction in vivo might alleviate the Th1 suppressive effect of NPC exosomes and sustain anti-tumoral T cell responses, and thereby improve clinical efficacy of immunotherapeutic approaches against NPC

    Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy

    No full text
    Dendritic cells (DC) are professional antigen-presenting cells that can be used as immune adjuvant for anti-tumoural therapies. This approach requires the generation of large quantities of DC that are fully characterized on the immunophenotypical and functional levels. In a murine model, we analysed the in vitro effects of granulocyte–macrophage colony-stimulating factor (GM-CSF) alone or combined with interleukin-4 (IL-4) or Flt3 ligand (Flt3-L) on the number, immunophenotype and functions of bone marrow-derived DC. In GM-CSF cultures, we have identified two populations based on their level of expression of major histocompatibility complex (MHC) class II molecules: MHC-IIhi cells, exhibiting the typical morphology and immunophenotype of myeloid DC (CD11c+ 33D1+ DEC-205+ F4/80+), and MHC-IIlo cells, heterogeneous for DC markers (30% CD11c+; 50% 33D1+; DEC-205−; F4/80+). The addition of Flt3-L to GM-CSF induced a twofold increase in MHC-IIhi DC number; besides, the MHC-IIlo cells lost all DC markers. In contrast, after addition of IL-4 to GM-CSF, the two populations displayed a very similar phenotype (CD11c+ 33D1− DEC-205+ F4/80−), differing only in their expression levels of MHC class II and costimulatory molecules, and showed similar stimulatory activity in mixed leucocyte reaction. We next analysed the migration of these cultured cells after fluorescent labelling. Twenty-four hours after injection into the footpads of mice, fluorescent cells were detected in the draining popliteal lymph nodes, with an enhanced migration when cells were cultured with GM-CSF+Flt3-L. Finally, we showed that MHC-IIhi were more efficient than MHC-IIlo cells in an anti-tumoral vaccination protocol. Altogether, our data highlight the importance of characterizing in vitro-generated DC before use in immunotherapy

    An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer

    Get PDF
    Inflammation is a critical process for eliminating pathogens, but can lead to serious deleterious effects if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. Galectins, a family of endogenous lectins with affinity for beta-galactoside-containing oligosaccharides, are expressed by several cells of the immune system and tissue-resident stromal cells. According to their architecture, this family of glycan-binding proteins is classified in those containing one-carbohydrate-recognition domain (CRD) (proto-type), those containing two-CRD joined by a linker non-lectin domain (tandem-repeat) and those that have one-CRD attached to an N-terminal peptide (chimera-type). Accumulating evidence indicates that galectins play critical regulatory roles in immune cell response and homeostasis. In this review, we summarize recent developments in our understanding of the galectins' roles within different immune cell compartments, and in the broader context of the inflammatory microenvironments. In particular we illustrate the immunoregulatory role of three representative members of each galectin subfamily: galectin-1, -3 and -9. This body of knowledge, documenting the coming of age of galectins as potential immunosuppressive agents or targets for anti-inflammatory drugs, represents a sound basis to further explore their potential as novel therapies for autoimmune diseases, chronic inflammation and cancer.Fil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Liu, F. T.. University of California at Davis; Estados UnidosFil: Hirashima, M.. University Kagawa; JapónFil: Anderson, A.. Harvard Medical School; Estados Unido
    corecore